

Box 308 Dawson City, YT Y0B 1G0 PH: 867-993-7400 FAX: 867-993-7434 www.cityofdawson.ca

NOTICE OF SPECIAL COMMITTEE OF THE WHOLE MEETING #CW21-31

This is to inform you a special meeting of City Council will be held as follows:

DATE OF MEETING: MONDAY, DECEMBER 13, 2021

PLACE OF MEETING: COUNCIL CHAMBERS, CITY OFFICE

TIME OF MEETING: 7:00 PM

PURPOSE OF MEETING:

1) Greenwood Engineering Solutions RE: Water Metering Update

DATE MEETING REQUESTED: MEETING REQUESTED BY: December 10, 2021 WILLIAM KENDRICK, MAYOR

Original signed by: Paul Robitaille, A/CAO December 13, 2021 Date

City of Dawson Water Metering Program Design

Adam Greenwood, P.Eng. Jacob Scissons, P.Eng. December 13, 2021

E

Presentation Overview

- 1. History of Water Metering in Dawson
- 2. Overview of Water System
- 3. Historical Water Use
- 4. Objectives of Water Metering Program
- 5. Water Metering Program Considerations
- 6. Metering Technologies and Reading Approaches
- 7. Overview of Water Meter Rates Review
- 8. Next Steps

History of Water Metering in Dawson

- Water meters were installed in 2002.
 - We understand the meters were not put into service based on public concerns about how meters would be read and how customers would be billed.
 - Some of the meters that were installed remain in place, while others have been removed.
 - All meters were installed, or planned to be installed, downstream of the bleeders.

History of Water Meters in Dawson

Overview of Water System

ENGINEERING

SOLUTIONS

Overview of Water System

SYSTEMS

Winter Water Use = 1.6 times Summer Water Use

Annual Water Use is Increasing by ~4% per year

2016 Water Use in the Territory

- Bleeder flows are currently not measured. Based on available data, it is estimated that bleeder flows (and leaks) could represent approximately 60% of the annual system-wide water use.
 - There are two types of bleeders:
 - Municipal Bleeders: located at watermain dead-ends and at the start of start of sewer mains.
 - Residential Bleeders: located at all services.

Objectives of Water Meter Program

- 1. Reduce residential per capita water use.
- 2. Charge customers based on actual consumption.
- 3. Reduce power and operating costs.
- 4. Understand unaccounted water use (ie. leaks).
- 5. Understand bleeder water use.
- 6. Collect water use data for future infrastructure (water and wastewater).
- 7. Simplify water rates.

Metering Technologies

- Some metering technologies have been around for 100+ years (ie. positive displacement), but recently vendors appear to be moving towards new technologies (ie. ultrasonic).
- Further to familiar brass body meters, some vendors are moving to plastic (polymer composite) materials.
- Meters are now available with enhanced features such as leak, reserve flow, and tamper detection, pressure and temperature monitoring, and similar.
- Consideration of technical and customer support from meter vendors.

Reading Approaches

0

- 1. Touch Read
- 2. Automated Meter Reading (AMR)
 - Walk-by or Drive-by Radio Read
- 3. Advanced Metering Infrastructure (AMI)
 - o Fixed Network Radio / Cellular Read

Estimated Costs

SYSTEMS

0					
	Estimated Costs ¹	Touch Read	Drive-by / AMR	Fixed Network / AMI ²	
	Capital Cost	\$430,000	\$595,000	\$665,000	
	Annual Costs	\$3,500	\$7,000	\$25,000	

- 1. Based on supply and installation of 618 meters.
- 2. Costs for radio and cellular AMI solutions vary by technology / vendor.

Water Rates Review

- Based on AWWA Best Practices
- Rate Setting Principles and Trade Offs
- Review of Rate Structure Options
- Recommended Approach

Common Rate Setting Principles

Principle	Description
Fairness and Equity	 Fair to all types of users. Defendable approach.
Conservation	- Pricing (rate) to encourage water conservation.
Continuity	- With previous approach / philosophy.
Affordability	- Charges are reasonable and not punitive.
Simplicity	 Easy for customers to understand. Efficient to administer.

Fixed Charge Model (most common)

Volume of Water Consumed

- Fixed price for each unit of water.
- Consumer pays starting from first unit.

SYST

E

- Price to consumer increases uniformly with volume used.
- Easy to understand.
- Promotes conservation.
- Good revenue stability.

Inclining Block Model

Volume of Water Consumed

- Successively higher price through a set of usage "blocks".
- Supports conservation.
- Highest revenue volatility.
- May lead to inequities if applied "across the board" to all customer classes.

SYSTEMS

• Not as easy for consumer to understand.

Minimum Charge Model

Volume of Water Consumed

• Variable rate "kicks in" after allotment is exceeded.

Rate Structure Components

There are typically two components to a metered rate structure:

Fixed Charge

SYSTE

- For rates to be fair, the fixed charge should be proportionate to the amount of water used.
- AWWA recommends basing the fixed charge on "equivalent connections".
 - For example a 4" connection can pass the equivalent water as twelve (12) - 1" connections.

Connection	Equivalent	
Size (inches)	Connections	
1	1	
1.5	2	
2	3	
3	7	
4	12	
6	25	
8	32	
10	46	
12	60	

Example of Potential Costs

Fixed Charge Examples

% Revenue	Monthly Fee	Volumetric Rate (\$/m³)	Low Water	Moderate Water	High Water
from Fixed			User	User	User
Charge			(23 m ³ /month)	(35 m³/month)	(46 m ³ /month)
25%	\$24	\$1.76	\$65	\$86	\$105
50%	\$48	\$1.17	\$75	\$89	\$102
75%	\$73	\$0.59	\$86	\$93	\$100

- 1. Low Water User consumes 300 litres of water per person per day.
- 2. Moderate Water User consumes 450 litres of water per person per day.
- 3. High Water User consumes 600 litres of water per person per day.
- 4. Fees are based on 2.5 people/household.
- 5. Assumes 618 services.
- 6. Assumes total annual water sales of 350,000 m³/year.
- 7. Assumes \$820,000 water revenues are required to run the water system.

Example of Potential Costs

SYSTEMS

0

Example of Leaky Toilet Cost

	Water Use (L/day)	Cost per Year			
Leaking Toilet		25% Fixed	50% Fixed	75% Fixed	
		Charge	Charge	Charge	
Small Leak	100	\$64	\$43	\$21	
Medium Leak	1,000	\$641	\$428	\$214	
Large Leak	15,000	\$9,620	\$6,414	\$3,207	

GREENWOOD

SYSTEMS

Implementation

- 1. Confirm metering drivers and program goals / objectives.
- 2. Conduct analysis of meter location, bleeder integration, etc.
- 3. Conduct meter / reading technology review and develop specifications.
- 4. Evaluate procurement options and prepare cost estimates.
- 5. Develop implementation program.
- We are here 6. Finalize Request for Proposal (RFP)
 - 7. Initiate public engagement / consultation.
 - 8. Select meter manufacturer / installer via RFP
 - 9. Install new meters / reading system.
 - 10. Revisit metering program after one year of operation.
 - 11. Update Water Rates Bylaw.

