

REPORT Phase II Environmental Site Assessment

at Lot 1059 (adjacent to Area D), Dawson City, YT

Submitted to:

Department of Community Services, Land Development

Yukon Government 307 Black Street Whitehorse, YT Y1A 2N1

Submitted by:

Golder Associates Ltd.

#13 - 151 Industrial RoadCalcite Business Centre Whitehorse, Yukon Territory Y1A 2V3 Canada

+1 867 633 6076

19131856-011-R-Rev0

Distribution List

- 1 Electronic Copy Yukon Government
- 1 Electronic Copy Golder Associates Ltd.

Study Limitations

This report was prepared for the use of the Government of Yukon, Community Services for the express purpose of providing advice with respect to the environmental condition of the Site. In evaluating the site, Golder Associates Ltd. has relied in good faith on information provided by others as noted in the Report. We have assumed and made reasonable efforts to verify that the information is factual and accurate. We accept no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or fraudulent acts of persons interviewed or contacted.

Any use which a third party makes of this Report, or any reliance on or decisions to be made based on it, are the sole responsibility of the third parties. If a third party require reliance on this Report, written authorization from Golder is required. Golder disclaims responsibility of consequential financial effects on property values.

The scope and the period of Golder's assessment are described in this Report, and are subject to restrictions, assumptions and limitations. Except as noted herein, the work was conducted in accordance with the scope of work and terms and conditions of the Contract. Conditions may therefore exist which were not detected given the limited nature of the assessment Golder was retained to undertake with respect to the Site and additional environmental studies and actions may be required. In addition, it is recognized that the passage of time affects the information provided in the Report. Golder's opinions are based upon information considered at the time of the writing of the Report. It is understood that the services provided for in the scope of work allowed Golder to form no more than an opinion of the actual conditions at the Site at the time the site was visited, and cannot be used to assess the effect of any subsequent changes in any laws, regulations, the environmental quality of the site or its surroundings. Asbestos and mould surveys were not performed.

The results of an assessment of this nature should in no way be construed as a warranty that the Site is free from any and all contamination from past or current practices.

The Phase II Environmental Site Assessment is intended to provide an assessment of near surface soil conditions with respect to potential contamination on the property at Lot 1059 (adjacent to Area D), Dawson City, Yukon Territory, at the time of the site assessment. Any use of this document by any party other than the Government of Yukon is at the sole discretion of such user.

The assessment of environmental conditions and potential hazards at the Site has been made using the historical information described within this report. The report must be considered in its entirety and no assurance is made regarding changes in conditions subsequent to the time of investigation.

The Site conditions have been inferred based on conditions observed at a limited number of sampling locations in accessible areas; however, it should be noted that conditions between and beyond sampling locations may vary. In addition, the assessment is dependent upon the accuracy of the analytical data generated through sample analysis and is limited to determining the presence of contaminants for which analysis have been conducted. Findings derived from this assessment are limited, and Golder cannot know or state as absolute fact that areas of the Site, or neighbouring properties, or portion thereof, are unaffected by the contaminants of concern. Government of Yukon still bears risk that such contaminants may be present on, or may migrate to or off the property after the time of this investigation.

Where references have been made to regulatory guidelines and documents, it should be noted that regulatory statutes and guidelines are subject to interpretation and these guidelines and documents and their interpretations may be subject to change over time.

Golder Associates Ltd. accepts no responsibility for the real or perceived property value of the Site, on its saleability, or on the ability to gain financing. If new information is discovered during future work, including excavations, borings or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions presented in this report and to provide amendments as required.

Table of Contents

1.0	INTRO	DUCTION1
2.0	BACK	GROUND1
3.0	OBJE	CTIVE AND SCOPE OF WORK2
4.0	REGU	LATORY FRAMEWORK
	4.1	Estimated Linear Groundwater Travel Time
	4.2	Soil Quality Standards4
	4.3	Groundwater Quality Standards4
5.0	FIELD	METHODS
	5.1	Sampling Rationale5
	5.2	Borehole Drilling and Monitoring Well Installation5
	5.3	Monitoring Well Development and Groundwater Sampling6
	5.4	Quality Assurance and Quality Control7
6.0	RESU	LTS8
	6.1	Drilling Investigation
	6.2	Soil Analytical Results8
	6.3	Groundwater Analytical Results9
	6.4	Hydrogeological Conditions9
	6.5	QA/QC Results10
7.0	CONC	LUSIONS AND RECOMMENDATIONS11
8.0	CLOS	JRE13
9.0	REFE	RENCES

TABLES (IN-TEXT)

Table 1: Summary of APECs and AECs	.1
Table 2: Sampling rationale for Lot 1059	.5
Table 3: May 2020 Groundwater Elevations	10

TABLES (ATTACHED)

Table A: Borehole Soil Sample Results for Lot 1059

Table B: Groundwater Sample Results for Lot 1059

Table C: Soil QAQC Results for Lot 1059

- Table D: Groundwater QAQC Results
- Table E: Trip and Field Blank Results

FIGURES

Figure 1: Key Plan Figure 2: Site Plan Figure 3: Soil and Borehole Locations and Results Figure 4: Groundwater Contours, May 2020

APPENDICES

APPENDIX A Borehole Logs

APPENDIX B Photographic Log

APPENDIX C Groundwater Development and Sampling Sheets

APPENDIX D Laboratory Certificate of Analysis and Chain of Custody Forms

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by Yukon Government, Department of Community Services, Land Development Unit (Community Services) to conduct a Phase II Environmental Site Assessment (ESA) of Lot 1059 (adjacent to Area D) (the Site). The location, surroundings, and layout of the Site are shown in Figure 1–Key Plan and Figure 2–Site Plan.

The Phase II ESA was undertaken in accordance with Yukon Government Contract #C00054238 and with the scope of work outlined in Golder's proposal titled "*Work Plan and Cost Estimate for Phase II Environmental Site Assessments in Dawson City, Yukon*" (reference No. 19131856-006-L-Rev1, dated 21 April 2020). Authorization to proceed with the work was received from Community Services via contract dated 23 April 2020. This report presents the results of the environmental site assessment work that was completed at the Site between 24 and 27 April 2020 and on 28 May 2020. The results of this program as presented in this report expand upon the data and findings from previous work at the Site completed by Golder and included in the report titled "*Phase I and Limited Phase II Environmental Site Assessment,* Lot 1059 (adjacent to Area D), Dawson City, Yukon" (Golder, 2020a).

2.0 BACKGROUND

Golder was previously retained by Community Services to conduct a Phase I and limited Phase II ESA of the Site (Golder, 2020a). The conclusion of the Phase I ESA identified the following two Areas of Potential Environmental Concern (APECs):

- APEC 1: Former Placer mine
- APEC 2: Neighbouring placer mine activities

Based on the information obtained as part of the Phase I and limited Phase II ESA, the following areas of environmental concern (AEC) and APECs were identified, as summarized in Table 1 along with corresponding potential contaminants of concern (PCOCs) and contaminants of concern (COCs).

APEC Label	Description	PCOC ^{1,2}
On-Site APECs		
AEC 1: Former placer mining	 A review of the aerial photographs for the Site indicated historical placer mining activities. A shallow soil sample collected at the Site contained chromium above the Yukon CSR RL and CL standards. The presence of elevated chromium concentrations possibly represents natural background conditions. A background soil assessment would be required to confirm this. 	Soil (COC): Chromium Groundwater (PCOC): LEPH/HEPH, PAH, BTEX/VPH, VOCs, metals.
Off-Site APECs		
APEC 2: Neighbouring placer mine activities	A review of the GeoYukon Database and an interviewee identified additional on-going placer mining activities on neighbouring properties. Based on the known land use of the neighbouring property, if contamination has occurred, there is the potential for the migration of contamination onto the Site.	Soil/Groundwater (PCOC): LEPH/HEPH, PAH, BTEX/VPH, VOCs, metals

Table 1: Summary of APECs and AECs

Table notes:

1. Based on limited nature of the Phase II ESA, additional contaminants of concern in soil may be identified based on the results of more intrusive sub-surface investigations.

2. Contaminants of Concern (COCs) are specific to soil, as groundwater quality was not assessed as part of the limited Phase II ESA.

The limited Phase II ESA included: One (1) soil sample that was submitted to ALS for analysis of PCOCs including light extractable petroleum hydrocarbons (LEPH), heavy extractable petroleum hydrocarbons (HEPH), extractable petroleum hydrocarbons (EPH), polycyclic aromatic hydrocarbons (PAHs), volatile petroleum hydrocarbons (VPH), benzene, toluene, ethylbenzene, and xylene (BTEX), and metals. The following parameters were measured at concentrations greater than the Yukon Contaminated Sites Regulation ("CSR"; Environment Act, 2002) standards for residential (RL) and/or industrial (IL) land use:

- Chromium was detected in the shallow soil samples at a depth of 0.05 m bgs. Sample 10161-04 had a concentration exceeding the applicable CSR RL and IL standards for freshwater aquatic life (AW-F).
- Analytical results for the remaining parameters met applicable CSR RL and CL standards.

Based on the information available collected as part of the report, Golder recommended the following additional work:

- Conduct a Site reconnaissance following the winter snow melt to identify areas of surficial staining or other evidence of spills that may not have been observed during the October 2019 Site visit.
- A Phase II Environmental Site Assessment was recommended to confirm the presence or absence of deeper soil and/or groundwater contamination on the Site based on the on- and off-Site APECs.
- Lateral and vertical delineation of the on-Site shallow soil contamination as identified in the limited Phase II ESA and/or complete an evaluation of a background metals as per CSR Protocol 9: Determining background soil quality.

3.0 OBJECTIVE AND SCOPE OF WORK

The overall objective of the project was to address recommendations from Phase I and Limited Phase II, specifically, confirm the presence or absence of chromium concentrations in deeper soil and/or groundwater contamination at the Site and delineate shallow chromium contamination in soil that was identified during the limited Phase II ESA. The following scope of work was carried out in order to meet this objective:

- Oversight during the drilling of three on-Site boreholes and installation of two monitoring wells on the Site.
- Collection of soil samples from the retrieved core during drilling.
- Collection of two groundwater samples from the installed monitoring wells.
- Analysis and interpretation of soil and groundwater results from the sampling program.
- Preparation of a summary report, documenting the findings of the work (this report).

4.0 REGULATORY FRAMEWORK

In the Yukon Territory, environmental matters pertaining to contaminated sites generally fall under the jurisdiction of Environment Yukon, pursuant to the *Environment Act* (Environment Act, 2002). A key regulation under the Environment Act relating to the assessment and remediation of contaminated sites is the Yukon Contaminated Sites Regulation ("CSR", O.I.C. 2002/171, pursuant to the *Environment Act*).

The following Site conditions were considered in selecting the appropriate assessment criteria:

- The Site does not have a potable water source and there are no drinking water wells present on Site.
- The current land use of the Site area is Industrial (IL).
- The Klondike River is located adjacent to the Site, approximately 180 metres southwest of the Site.
- There are no known drinking water wells within 1 km or within a 100-year travel time from the Site (see below). The nearest water supply well is located approximately 1.1 km NW of the Site.

4.1 Estimated Linear Groundwater Travel Time

In order to determine whether drinking water standards are applicable to the Site, the groundwater travel time was calculated. Based on Yukon CSR Protocol 6, if the leading edge of a contaminated groundwater plume is located within a 1.5 km radius (travel time of less than or equal to 100 years) of the closest existing or probable future drinking water source, the Drinking Water use standards are applicable to the site due to the potential for the groundwater to pollute the receiving waters. The hydraulic conductivity of the shallow silty sand and gravel aquifer underlying the Site is estimated to be approximately 1 x 10^{-5} m/s (sand/gravelly sand; Freeze and CherryDuffield 2019, 1972). The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network and groundwater level elevations in May 2020, to be approximately 0.002 m/m (see section 6.4) to the southwest toward the Klondike River. A reasonable estimate for linear groundwater velocity is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in metres per second (m/s).

K: is the hydraulic conductivity in m/s

i: is the horizontal hydraulic gradient (m/m)

n: is the porosity which is estimated to be approximately 0.3 (Fetter, 1994) in coarse sand and gravel aquifers.

The resulting groundwater velocity is estimated to be approximately 6.7 x 10⁻⁸ m/s; or 2.1 metres per year or 210 m in 100 years. Groundwater at the Site may travel faster or slower than this estimate due to inaccuracies or seasonal variations. Given that the groundwater flow direction is southwest toward the Klondike River and the location of the water supply well is 1.1 km cross-gradient, there is not expected to be a hydraulic connection between the Site and the nearest drinking water well. Therefore, drinking water standards have been considered not applicable to the Site. The Klondike River is located 160 m from the Site which, even though greater than the 105 m in 50 years, Aquatic Life standards have conservatively been considered applicable to Site, due to its the River's location down-gradient of the Site, and the potential for the Site to be hydraulically connected.

4.2 Soil Quality Standards

The CSR provides Generic Numerical Soil Standards (Schedule 1) and Matrix Numerical Soil Standards (Schedule 2) for use in the assessment of soil quality at sites subject to investigation. The soil standards are divided into five categories based on land use and include standards for agricultural land use (AL), park land use (PL), residential land use (RL), commercial land use (CL) and industrial land use (IL). Given that the previous land sue at the Site was industrial and that the future land use of the Site has not been confirmed, the CSR RL and IL soil standards were conservatively applied for screening analytical results from the Phase II ESA.

Schedule 2 standards are further divided into site-specific pathways for the protection of human health and the environment. The following pathways were considered applicable for soil screening purposes at the Site:

- Human Health Protection:
 - Intake of Contaminated Soil (I).
- Environmental Health Protection:
 - Groundwater Flow to Surface Water Used by Aquatic Life Freshwater (AW F).
 - Toxicity to Soil Invertebrates and Plants (T)
- The following background study was conducted by Golder in parallel with the Phase II ESA at the Site in order to support a request for approval from Environment Yukon, Standards and Approvals for determination of local background concentrations for arsenic and chromium on the Site: Determination of Local Background metal concentrations in soil, Dome road/old slinky mine area, Dawson City, Yukon, Golder Associates Ltd., dated 28 July 2020.

In the report noted above, Golder proposed a 95th percentile-based local background soil concentration applicable to Area A as follows:

- Arsenic: 15 mg/kg
- Chromium: 420 mg/kg

The background concentrations calculated were applied to the Site, based on proximity, similar soil type, and similar land use. The lack of undisturbed area on the Site did not allow for any samples to be collected that would represent background Site conditions. Area A, where the background samples were collected is located approximately 100 m east from the Site, as shown on Figure 4.

4.3 Groundwater Quality Standards

Based on these Site characteristics, the Yukon CSR "Schedule 3 Generic Numerical Water Standards" for protection of freshwater aquatic life (AW-F) were considered applicable for assessing groundwater quality at the Site.

5.0 FIELD METHODS

5.1 Sampling Rationale

During the Phase II ESA, three boreholes were drilled on Site with two of the boreholes completed as a monitoring well. The rationale for each borehole is described in Table 2 below and the locations are shown on Figure 3.

Site	Borehole/Monitoring Well	Rationale
	MW20-02	Characterize potential groundwater contamination from on-and off-Site APECs and AECs identified during the Phase I and limited Phase II ESA.
Lot 1059	BH20-04	Characterize potential deeper soil contamination from on-Site AECs identified in the Phase I and limited Phase II ESA.
	MW20-03	Characterize potential groundwater contamination from off-Site APECs.

5.2 Borehole Drilling and Monitoring Well Installation

The drilling and monitoring well installation was completed by Metro Drilling of Whitehorse, YT (contracted directly by Yukon Government) from 24 to 27 April 2020 using a track-mounted sonic drill rig. The program was monitored by Golder field staff. The purpose of the drilling and monitoring well installation program was to characterize any potential soil and/or groundwater contamination at the Site. Additional drilling was conducted at neighbouring properties, Area A and Area D, which are shown on Figure 4 to characterize the area. Results from the drilling investigation at Area A and Area D are discussed under separate Phase II ESA reports for each of those properties. The groundwater flow direction for the Site was determined using the groundwater elevation data from monitoring wells on the Site and on Area D.

Samples from the soil core were taken at regular intervals to log the lithology encountered in each borehole and conduct field screening using the PID.

The field screening method for organic vapour concentration involved the following steps:

- A polyethylene bag was filled approximately one-half to one-third full (no less than 250 mL or eight ounces).
- Prior to the PID reading, the bag was agitated for approximately 15 seconds.
- Bag was placed in a warm location (approximately 10 minutes but no longer than an hour).
- Bag was then agitated again for approximately 15 seconds.
- The PID was inserted into the bag for three seconds and the highest reading was recorded in the field forms.

Field staff also used physical screening methods, such as visual and olfactory screening, to obtain basic information related to the presence or absence of petroleum hydrocarbons.

Six (6) soil samples were collected from the three boreholes advanced across the Site and selected for laboratory analysis. One (1) field duplicate sample was collected and selected for analysis, for quality control and quality assurance (QA/QC) purposes. Upon completion of the borehole, the drill cuttings were placed back into the borehole if not completed as a monitoring well. Borehole locations are displayed on Figure 3, and depths at which soil samples were collected are shown presented on the Borehole Logs provided in Appendix A.

Soils were assessed for potential contamination using visual and olfactory evidence in addition to the collection of laboratory samples. Nitrile gloves were worn and changed between sampling locations and sampling equipment was cleaned with environmental-grade detergent and water and rinsed with de-ionized water prior to use and between sampling locations.

Each sample was labelled, registered on a chain-of-custody form, placed in a cooler with ice for transport to ALS Laboratory in Whitehorse, YT, and submitted for laboratory analysis of one or more of the following potential contaminants of concern (PCOCs):

- LEPH, HEPH, and VPH
- BTEX
- PAHs
- Metals

Upon completion of the analysis, several samples were analysed further for speciated chromium in order to gain an understanding of the chromium species present.

Soil samples analyzed for BTEX were collected using a method that involved field preservation of the sample with methanol, in accordance with the procedures provided by the laboratory. For this method, approximately 5 grams (+/- 1 gram) of soil was transferred to vials provided by the laboratory that contained a pre-determined weight of methanol using disposable Terra Core® soil samplers. Soil samples for the remaining parameters were collected in pre-cleaned 125 millilitre (mL) glass jars with Teflon®-lined lids supplied by the laboratory. The soil was packed and sealed in the jars to minimize the loss of volatile substances within the sample jar.

The monitoring wells were constructed in accordance with Yukon CSR Protocol No. 7: Groundwater Monitoring Well Installation and Sampling (Environment Yukon, 2019). The monitoring wells were installed using pre-packed 1.5 m (5 foot) long, No. 10 slot, PVC well screens and schedule 40 polyvinyl chloride (PVC) riser pipes with threaded joints and end capped with a sand point. The pre-packed screens were placed to intersect and straddle the water table. A filter pack of clean silica sand was placed to surround the well screen and to at least 0.3 m above the top of screen. The monitoring wells were sealed above the filter pack with hydrated bentonite chips and completed above ground surface with a protective lockable steel casing. The monitoring well locations are shown on Figure 4. Photographs showing Site conditions at the time of drilling are provided in Appendix B.

5.3 Monitoring Well Development and Groundwater Sampling

Following installation, the monitoring wells were developed to remove water or sediments that may have been introduced during drilling and to remove fines from around the well screen. The monitoring well was developed on 26 April 2020 by removing a minimum of six well volumes of water using dedicated Waterra™ tubing. Field parameters measured during development included temperature, pH, specific conductivity, dissolved oxygen, and oxidation reduction potential (ORP). Field development and sampling sheets are provided in Appendix C.

Prior to the purging and sampling of each well, organic vapour well headspace readings were taken using a MiniRae 3000 Photoionization Detector (PID) upon first opening the well cap, followed by measuring the depth-to-water with an electronic water level tape. The following procedures were followed when purging the monitoring well:

- remove at least three well casing volumes
- monitor water quality parameters until a minimum of four of the parameters listed were stable

During purging, physiochemical parameters (pH, temperature, conductivity, dissolved oxygen and ORP) were monitored at regular intervals using an YSI multi-meter. Purging continued until a minimum of three well volumes were removed. Water quality parameters were considered stable when three successive readings, collected three to five minutes apart, were within:

- ± 3 percent for temperature (minimum of ± 0.2°C)
- ± 0.1 for pH
- ± 3 percent for conductivity
- ± 10 mv for ORP
- ± 10 percent for dissolved oxygen

Groundwater purging was conducted using dedicated HDPE Waterra[™] tubing and foot valve by manual purging and sampling was conducted using a GeoPump[™] peristaltic pump and dedicated high density polyethylene and silicone tubing. Sample containers and appropriate preservatives were obtained from ALS Laboratories (ALS) of Whitehorse, YT.

The groundwater samples were collected from the monitoring wells on 28 May 2020. Groundwater sampling followed the procedures outlined in the CSR (Environment Act, 2002) Protocol No. 7 (Environment Yukon, 2019). The groundwater sample was collected directly from the dedicated tubing installed in each well.

The samples were submitted for chemical analyses of the following: BTEX, VPHw, LEPH/HEPH, PAHs, dissolved metals, and dissolved speciated chromium. For Quality Assurance/Quality Control (QA/QC) purposes, one duplicate groundwater sample, field blank and travel blank were collected and submitted to ALS for the same chemical parameters listed above. Samples were kept in coolers with ice packs prior to their delivery to ALS in Whitehorse, YT, within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025 for analysis.

The laboratory analytical results and chain of custody forms are provided in Appendix D.

5.4 Quality Assurance and Quality Control

To document that the sampling and analytical data are interpretable, meaningful and reproducible, conformance to a Golder Quality Assurance and Quality Control (QA/QC) program was followed. Standard Golder field and industry procedures were used throughout the Phase II ESA to document the reproducibility of the results. This involved using QA/QC measures in both the collection (field program) and analysis (laboratory) of samples.

Chain-of-Custody procedures were used for the shipment of samples to the laboratories; samples included in a shipment were identified on a Chain-of-Custody form, with one copy retained by Golder personnel, after sign-off. The quality of the duplicate samples was assessed based on relative percent difference (RPD) between the primary and the duplicate samples. The RPD is calculated as follows:

 $RPD (\%) = \frac{absolute(concentration of primary sample - concentration of duplicate sample)}{average(concentration of primary sample, concentration of duplicate sample)} \times 100$

An RPD target value of less than 20% for groundwater and 35% for soil is considered by Golder an indication of acceptable sample variability and represents a good correlation between the sample and its duplicate. As the measured concentrations of the primary and duplicate samples approach the laboratory reporting limit, the uncertainty associated with the RPD increases; as such, the acceptance limits only apply to samples where the concentrations less than five times the laboratory method detection limit ("MDL"). For parameters with concentrations less than five times the MDL, the Difference Factor (DF) is calculated. The DF is defined as the absolute value between two values, divided by the method detection limit, and an acceptable target value for a DF by Golder is considered to be less than 2.0.

6.0 RESULTS

6.1 Drilling Investigation

Three boreholes (MW20-02, MW20-03 and BH20-03) were advanced on the Site to a depth of 7.62 m bgs, two of which were completed as monitoring wells. The upper stratigraphy was similar in two of boreholes (BH20-03 and MW20-02) and consisted of a combination of gravel and cobbles to a depth of between 3.05 and 4.27 m bgs. This was underlain by alternating sands, silty sands and gravels to a depth of 7.32 m bgs in MW20-02. The stratigraphy noted in MW20-03 consisted of an upper layer of clay with the presence of organics to a depth of 0.3 m bgs underlain by alternating sands, silty sands and gravels to a depth of 4.27 m bgs, underlain by bedrock (green schist) at a depth of 4.27 m bgs. These observations are consistent with the stratigraphy encountered on adjacent sites. Groundwater was encountered in the two monitoring wells at a depth ranging from 1.90 to 4.18 m bgs. A record of the borehole logs is included in Appendix A.

The field headspace readings for the samples ranged from 0.0 to 0.3 ppm, indicating the presence of low or no concentrations of volatile petroleum hydrocarbons. Hydrocarbon-like staining was not observed during the borehole drilling.

6.2 Soil Analytical Results

Analytical results for soil samples collected from the boreholes were less than applicable standards, with the following exceptions:

The concentration of total chromium at BH20-10C (459 mg/kg) was greater than the proposed background standard of 420 mg/kg (Golder, 2020b) and the CSR RL and IL standard of 300 mg/kg and 700 mg/kg, respectively. Samples collected at BH20-03A (242 mg/kg), BH20-10B (125 mg/kg) were not submitted for speciation analysis. As a conservative approach, these samples would be greater than the CSR RL and IL standard of 60 mg/kg for hexavalent chromium. The samples were collected at depths ranging from 1.35 to 6.1 m bgs.

- The concentrations of trivalent chromium in samples BH20-03A (242 mg/kg) collected at 1.35 to 1.5 m bgs and BH20-10C (459 mg/kg) collected at 5.95 to 6.1 m bgs exceeded the applicable CSR RL and IL standard of 65 mg/kg. The samples selected for chromium speciation indicated that the total chromium concentration consists of 100% trivalent chromium and hexavalent chromium was not present.
- The concentration of total cobalt at BH20-03A (163 mg/kg) exceeded the CSR RL standard of 100 mg/kg but less than the IL standard of 300 mg/kg. The sample was collected at a depth of between 1.35 and 1.5 m bgs.

Based on the soil results from the drilling investigation and the limited Phase II ESA (Golder, 2020a), chromium has been measured to a depth of 6.1 m bgs at several locations across the Site. It is thought based on the background soil assessment that the elevated chromium concentrations on the Site and on neighboring properties is reflective of the native soil quality in the area.

Cobalt was not identified as a PCOC during the Phase I ESA at the Site (Golder, 2020a) and was not reported at concentrations above the applicable CSR standard during the limited Phase II ESA. Elevated cobalt concentrations (35.7 mg/kg and 39.1 mg/kg) were reported on the adjacent property, Area A (Golder 2020c) in both shallow and deeper soil (up to 3.05 m bgs). It is possible that elevated cobalt may also be indicative of native background soil quality in the area.

The results of the soil investigation are shown on Figure 3 alongside the results from the limited Phase II ESA (Golder, 2020a). Detailed analytical results for soil samples are shown on Table A at the end of this report.

6.3 Groundwater Analytical Results

Groundwater samples were collected from on-Site monitoring wells MW20-02 and MW20-03 on 28 May 2020. Samples were submitted to the laboratory for analysis of BTEX, VPHw, LEPH/HEPH, PAHs and dissolved metals, including speciated chromium. Laboratory results for parameters that were analyzed were less than the applicable CSR AW-F for groundwater samples collected from monitoring wells MW20-02 and MW20-03.

Detailed analytical results for groundwater samples are provided in Table B, at the end of this report. The Chain of Custody records and laboratory reports for groundwater samples are included in Appendix D.

6.4 Hydrogeological Conditions

Groundwater levels in the three monitoring wells across the Site and Area D were measured prior to purging and sampling on 28 May 2020. The depth to groundwater ranged from 2.44 to 8.05 metres below top of casing (m btoc); with groundwater located within the silty sand and gravel aquifer.

The relative groundwater elevations were calculated using ground elevations obtained from topographic information (Government of Yukon, 2018), measured stick-up height, and depth to groundwater. The groundwater elevations and contours are shown on Figure 4. The elevations are provided in Table 3 below.

Monitoring Well Location	Ground Surface Elevation (m asl)	Stick-up height	Depth to Groundwater 28 May 2020 (m btoc)	Groundwater Elevation (m asl)
MW20-01 (Area D)	325.41	0.73	8.05	318.09
MW20-02	320.77	0.62	3.29	318.10
MW20-03	320.29	0.66	2.44	318.51

Table 3: May 2020 Groundwater Elevations

m asl = meters above sea level

Based on the groundwater elevations, the groundwater flow direction in the area is to the southwest, as shown in Figure 4. Using the groundwater elevations from 28 May 2020, the horizontal hydraulic gradient across the Site is approximately 0.002 m/m. The groundwater flow direction corresponds to the regional topography and anticipated flow direction towards the Klondike River which is located adjacent to the Site.

6.5 QA/QC Results

As part of the field activities, Golder collected the following QA/QC samples:

- One soil duplicate sample
- One groundwater duplicate sample
- One travel blank
- One field blank

The results of the field duplicate analyses are provided in Table C (soil) and, Table D (groundwater). The results for the blank samples are provided in Table E. A summary of the QA/QC results is as follows:

- The majority of the RPD values for soil parameters met Golder's applicable Data Quality Objective (DQO) of 35%. Select metal parameters reported elevated RPDs in soil above Golder's DQOs and likely reflect the heterogeneous distribution of metals concentrations in soil across the Site. The corresponding analytical results were reported below the applicable standards and were not considered PCOCs as part of this Phase II ESA. The following parameters exceeded DQOs outlined for the Phase II ESA:
 - Barium (RPD of 41%)
 - Cobalt (RPD of 44%)
 - Lead (RPD of 40%)
 - Tungsten (RPD of 50%)
- RPD values for groundwater parameters met Golder's applicable Data Quality Objective (DQO) of 20%.

Analytical results for the travel blank were less than laboratory detection limits, which indicates that there is a low potential for contamination of the samples from external sources during transport to the laboratory. The majority of the analytical results for the field blank were less than the laboratory method detection limits. Concentrations of barium and molybdenum were detected in the field blank, greater than five times the laboratory method detection limit. Corresponding analytical results for the samples for these parameters may be biased high but concentrations are less than the applicable CSR standards. Based on a review of the QA/QC program, the data collected during the field investigation are considered reproducible and suitable for the purposes of the Phase II ESA at the Site.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Golder was retained by Yukon Government to conduct a Phase II ESA at Lot 1059, Dawson City, Yukon. This report presents the results of the Phase II ESA that was completed at the Site between 24 and 27 April 2020 with groundwater sampling conducted on 28 May 2020. The results of this program expand upon the data and findings presented in the Phase I and Limited Phase II ESA completed by Golder in April 2020 (Golder, 2020a). The primary objective of the project was to address recommendations from the Phase I and Limited Phase II, specifically to confirm the presence or absence of elevated chromium concentrations in deeper soil and/or groundwater contamination at the Site.

The objectives of the work are considered to be met, based on the drilling investigation that was completed at the Site. The key findings of the program are as follows:

- The soil samples collected as part of the Phase II ESA were less than applicable standards, with the following exception:
 - The concentration of total chromium at BH20-10C (459 mg/kg), exceeded the applicable CSR RL standard of 300 mg/kg. The sample was collected at depths ranging from 5.95 to 6.1 m bgs.
 - The concentration of total chromium at BH20-10C (459 mg/kg) was greater than the proposed background standard of 420 mg/kg.
 - The concentrations of trivalent chromium in samples BH20-03A (242 mg/kg) collected from 1.35 to 1.5 m bgs and BH20-10C (459 mg/kg) collected from 5.95 to 6.1 m bgs exceeded the applicable CSR RL and IL of 65 mg/kg. The samples selected for chromium speciation indicated that the total chromium concentration consists of 100% trivalent chromium.
 - The concentrations of total cobalt at BH20-03A (163 mg/kg) was greater than the CSR RL standard of 100 mg/kg but was less than the IL standard of 300 mg/kg. The sample was collected at a depth from 1.35 to 1.5 m bgs.
- Based on the soil results from this drilling investigation, the limited Phase II ESA (Golder, 2020a), and background metals evaluation (Golder, 2020b), chromium has been measured in soil to the maximum depth investigated (6.1 m bgs) and at several locations across the Site and neighboring properties. It is thought that the elevated chromium concentrations on the Site and on neighboring properties are representative of the native soil quality of the area.

- Cobalt was not identified as a PCOC during the Phase I ESA at the Site (Golder, 2020a) and cobalt was not found in shallow soils at concentrations above the applicable CSR standard during the limited Phase II ESA. Elevated cobalt concentrations (35.7 mg/kg and 39.1 mg/kg) were measured at adjacent property, Area A (Golder, 2020c) in both shallow and deeper soil (up to 3.05 m bgs). It is likely that elevated cobalt may also be indicative a native background soil conditions of the area.
- Based on the groundwater elevations, the groundwater flow direction across the Site is to the southwest with the horizontal hydraulic gradient across the Site is approximately 0.002 m/m. The groundwater flow direction corresponds to the regional topography and anticipated flow direction towards the Klondike River which is located adjacent to the Site.

Based on the information available to date, Golder recommends the following additional work:

Submit the background metals memo prepared by Golder (Golder, 2020b) to obtain approval from the Yukon Government, Standards and Approvals Branch for the use of the proposed background standards on the Site with consideration to expand the scope to assess the background concentrations of cobalt. Standards and Approvals Branch may require additional metals sampling or the completion of Screening-level Risk Assessment (SLRA) of the Site to evaluate whether elevated metal concentrations at the Site pose acceptable risks to human health and the environment.

8.0 CLOSURE

We trust this information is sufficient for your needs at this this time. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

Karlee Bendera, BSc, AIT Environmental Scientist

M. 1/

Tamra Reynolds, MSc, PGeo (BC, NT/NU) Associate, Senior Hydrogeologist

KB/TR/syd

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/116659/project files/6 deliverables/issued to client_for wp/19131856-011-r-rev0/19131856-011-r-rev0-philesa 6003-08sep_20.docx

9.0 **REFERENCES**

Environment Act. S.Y. 2002, c.76, s.1

- Freeze, R.A. and Cherry, J.A. (1979) Groundwater, Prentice Hall, Englewood Cliffs, 1979, NJ, USA.
- Environment Yukon (2017). *Protocol No. 5: Petroleum Hydrocarbon Analytical Methods and Standards*. Dated 1 December 2017.
- Environment Yukon (2017). Protocol No. 6: Application of Water Quality Standards, Dated August 2012.
- Environment Yukon (2018). Protocol No. 3: Soil sampling procedures at Contaminated Sites. Dated 1 February 2018.
- Environment Yukon (2018). *Protocol No. 9: Determining Background Soil Quality*. Dated 1 March 2011.Fetter, C.W. (1994) Applied Hydrogeology. 3rd Edition, Macmillan College Publishing Company, New York.
- Environment Yukon (2019). Protocol No. 7: Groundwater Monitoring Well Installation, Sampling and Decommissioning. Dated 1 November 2019.
- Golder Associated Limited (Golder), 2020. Phase I and Limited Phase II Environmental Site Assessment: Lot 1059 (Adjacent to Area D), Dawson City, Yukon. Prepared for Yukon Government, Department of Community Services, Land Development (Golder, 2020a)
- Golder. 2020, Determination of Local Background metal concentrations in soil, Dome road/old slinky mine area, Dawson City, Yukon, (Golder, 2020b)
- Golder. 2020. Phase II Environmental Site Assessment: Area A, Dawson City, Yukon. Prepared for Yukon Government, Department of Community Services, Land Development (Golder, 2020c)
- Government of Yukon. 2020. GeoYukon Application: 2018 Airborne LiDAR layer. Available at https://yukon.maps.arcgis.com/home/item.html?id=29bcf0c2a98b48d8a7ad79bc2bb8ce51
- Yukon Contaminated Sites Regulation, O.I.C. 2002/171, pursuant to the Environment Act. Dated September 30, 2002.

					Location Sample Name Sample Date Sample Depth Laboratory ID Sample Type	BH20-03 BH20-03A April 25, 2019 1.35-1.5 m WR2000176-001 N	BH20-04 BH20-04A April 25, 2019 4.25-4.5 m WR2000176-003 FDA	BH20-04 BH20-04B April 25, 2019 4.25-4.5 m WR2000176-004 FD	BH20-04 BH20-04C April 25, 2019 5.95-6.1 m WR2000176-005 N	BH20-10 BH20-10B April 27, 2019 3.65-3.8 m WR2000176-008 N	BH20-10 BH20-10C April 27, 2019 5.95-6.1 m WR2000176-009 N
Parameter Field + Physical	CSR - RL	MCS	CSR - IL	MCS	Unit						
PID Moisture, Percent					ppm %	0.3 14.3	0	0	0.1 10.1	0.2 10.0	0.2 13.4
pH					pH units	8.07	8.12	8.21	8.11	8.78	9.02
Hydrocarbons Acenaphthene					mg/kg	< 0.0050	-	-	< 0.0050	< 0.0050	-
Acenaphthylene Acridine					mg/kg mg/kg	< 0.0050 < 0.010	-	-	< 0.0050 < 0.010	< 0.0050 < 0.010	-
Anthracene	1	G	10	G	mg/kg	< 0.0040 < 0.010	-	-	< 0.0040 < 0.010	< 0.0040 < 0.010	-
Benz(a)anthracene Benzo(a)pyrene	1	T	10	T	mg/kg mg/kg	< 0.010	-	-	< 0.010	< 0.010	-
Benzo[b,j,k]fluoranthene Benzo(g,h,i)perylene					mg/kg mg/kg	< 0.015 < 0.010	-	-	< 0.015 < 0.010	< 0.015 < 0.010	-
Benzo(k)fluoranthene	1	G	10	G	mg/kg	< 0.010 < 0.010	-	-	< 0.010 < 0.010	< 0.010 < 0.010	-
Chrysene Dibenz(a,h)anthracene	1	G	10	G	mg/kg mg/kg	< 0.0050	-	-	< 0.0050	< 0.0050	-
Fluoranthene Benzo(a)pyrene Total Potency Equivalence (TPE)	1				mg/kg mg/kg	< 0.010 < 0.010	-	-	< 0.010 < 0.010	< 0.010 < 0.010	-
Benzo(b,j) fluoranthene Fluorene					mg/kg mg/kg	< 0.010 < 0.010	-	-	< 0.010 < 0.010	< 0.010 < 0.010	-
Indeno(1,2,3-c,d)pyrene	1	G	10	G	mg/kg	< 0.010	-	-	< 0.010	< 0.010	-
Index of Additive Cancer Risk (IACR) Naphthalene	5	G	50	G	mg/kg mg/kg	< 0.11 < 0.010	-	-	< 0.11 < 0.010	< 0.11 < 0.010	-
Phenanthrene	5 10	G	50 100	G G	mg/kg	< 0.010 < 0.010	-	-	< 0.010	< 0.010 < 0.010	-
Pyrene Quinoline	10	G	100	G	mg/kg mg/kg	< 0.010	-	-	< 0.010 < 0.010	< 0.010	-
2-methylnaphthalene EPH (C10-C19)					mg/kg mg/kg	< 0.010 < 200	-	-	< 0.010 < 200	< 0.010 < 200	-
LEPH (C10-C19) Less PAHs EPH (C19-C32)	1000	G	2000	G	mg/kg	< 200 < 200	-	-	< 200 < 200	< 200 < 200	-
HEPH (C19-C32) Less PAHs	1000	G	5000	G	mg/kg mg/kg	< 200	-	-	< 200	< 200	-
VPH (C6-C10) VHC (C6-C10)	200	G	200	G	mg/kg mg/kg	< 10 < 10	-	-	< 10 < 10	< 10 < 10	-
1-Methylnaphthalene					mg/kg	< 0.010	-	-	< 0.010	< 0.010	-
Metals Aluminum		_			mg/kg	26300	14200	15300	10100	31200	42800
Antimony Arsenic	20 20	G AWF	40 20	G AWF	mg/kg mg/kg	11.7 4.18	0.90 10.5	1.03 11.8	0.75 9.36	0.59 3.52	< 0.10 0.81
Barium Beryllium	500 4	G G	2000 8	G G	mg/kg mg/kg	98.2 0.17	227 0.21	150 0.24	192 0.33	140 0.12	33.7 < 0.10
Bismuth	4	9	0	9	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Boron Cadmium	70	т	150	AWF	mg/kg mg/kg	< 5.0 0.129	< 5.0 0.228	< 5.0 0.227	< 5.0 0.246	< 5.0 0.188	< 5.0 < 0.020
Calcium Chromium (Total)	300	т	700	т	mg/kg mg/kg	4020 242	2600 41.1	3370 41.5	2810 35.0	3370 125	2030 459
Chromium Trivalent (Cr(III))	65	AWF	65	AWF	mg/kg	242	-	-	-	-	459
Chromium Hexavalent (Cr(VI)) Cobalt	60 50	AWF G	60 300	AWF G	mg/kg mg/kg	< 0.10 163	12.3	- 19.2	- 8.90	22.4	< 0.10 30.2
Copper Iron	150	Т	250	Т	mg/kg mg/kg	49.0 36300	46.0 25300	46.2 26600	34.4 19800	122 32900	15.8 41100
Lead	1000	т	2000	т	mg/kg	492	4.57	6.87	4.91	1.93	0.52
Lithium Magnesium					mg/kg mg/kg	25.7 26800	14.0 12000	16.1 12200	13.0 7230	21.6 35600	28.2 59300
Manganese Mercury	100	т	150	т	mg/kg mg/kg	600 < 0.0500	503 < 0.0500	512 < 0.0500	348 < 0.0500	1090 < 0.0500	688 < 0.0500
Molybdenum	10	G	40	G	mg/kg	3.58	2.27	2.26	2.50	0.89	0.10
Nickel Phosphorus	100	G	500	G	mg/kg mg/kg	77.2 281	27.4 562	26.9 770	25.5 666	62.0 192	112 114
Potassium Selenium	3	G	10	G	mg/kg mg/kg	160 < 0.20	420 0.41	460 0.39	530 0.41	120 < 0.20	180 < 0.20
Silver Sodium	20	G	40	G	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10 52	< 0.10
Strontium					mg/kg mg/kg	117 16.4	86 21.4	120 25.0	109 23.4	11.5	< 50 2.00
Sulphur (S8) Thallium					mg/kg mg/kg	< 1000 < 0.050	< 1000 < 0.050	< 1000 < 0.050	< 1000 < 0.050	< 1000 < 0.050	< 1000 < 0.050
Tin Titanium	50	G	300	G	mg/kg mg/kg	< 2.0 1220	< 2.0 342	< 2.0 364	< 2.0 248	< 2.0 513	< 2.0 892
Tungsten					mg/kg	107	4.18	6.95	4.52	< 0.50	< 0.50
Uranium Vanadium	200	G			mg/kg mg/kg	0.364 95.7	0.606 52.0	0.650 54.4	0.602 39.2	0.076 104	< 0.050 116
Zinc Zirconium	450	Т	600	Т	mg/kg mg/kg	71.8 1.3	72.1 1.9	70.5 2.0	60.0 2.0	42.4 < 1.0	33.2 < 1.0
VOCs + BTEX											
Bromodichloromethane (BDCM) Bromoform (Tribromomethane)	-	-		_	mg/kg mg/kg	-	-	-	-	-	-
Carbon Tetrachloride Chlorobenzene	5 2	G G	50 10	G G	mg/kg mg/kg	-	-	-	-	-	-
Chloroethane Chloroform	5	G	50	G	mg/kg mg/kg	-	-	-	-	-	-
Chloromethane					mg/kg	-	-	-	-	-	-
Dichloromethane (DCM) (Methylene Chloride) Dibromochloromethane (DBCM)	5	G	50	G	mg/kg mg/kg	-	-	-	-	-	-
1,2-dichlorobenzene 1,3-dichlorobenzene	1	G G	10 10	G G	mg/kg mg/kg	-	-	-	-	-	-
1,4-dichlorobenzene	1	G	10	G	mg/kg	-	-	-	-	-	-
1,1-dichloroethane 1,2-dichloroethane	5 5	G G	50 50	G G	mg/kg mg/kg	-	-	-	-	-	-
, 1,1-dichloroethene 1,2-dichloroethylene (Cis) (1,2-dichloroethene)	5	G	50 50	G G	mg/kg mg/kg	-	-	-	-	-	-
1,2-dichloroethylene (Trans) (1,2-dichloroethene)					mg/kg	-	-	-	-	-	-
1,2-dichloropropane (Propylene Dichloride) 1,3-dichloropropene (Cis)	5 5	G G	50 50	G G	mg/kg mg/kg	-	-	-	-	-	-
1,3-dichloropropene (Trans) 1,3-dichloropropene, Total	5 5	G G	50 50	G G	mg/kg mg/kg	-	-	-	-	-	
1,1,1,2-tetrachloroethane					mg/kg	-	-	-	-	-	-
1,1,2,2-tetrachloroethane Tetrachloroethylene (PCE/PERC)	5 5	G G	50 50	G G	mg/kg mg/kg	-	-	-	-	-	-
1,1,1-trichloroethane 1,1,2-trichloroethane	5 5	G G	50 50	G G	mg/kg mg/kg	-	-	-	-	-	-
Trichloroethylene (TCE)	10	Т	15	Т	mg/kg	-	-	-	-	-	-
Trichlorofluoromethane (Freon 11) Vinyl Chloride (Chloroethene)					mg/kg mg/kg	-	-	-	-	-	-
Benzene Toluene	0.04 200	AWF G	0.04 200	AWF G	mg/kg mg/kg	< 0.0050 < 0.050	-	-	< 0.0050 < 0.050	< 0.0050 < 0.050	-
Ethylbenzene	200 200 200	G	200 200	G G	mg/kg	< 0.015	-	-	< 0.015	< 0.015	-
Xylenes, Total o-Xylene		G			mg/kg mg/kg	< 0.075 < 0.050	-	-	< 0.075 < 0.050	< 0.075 < 0.050	-
Styrene	5	G	50	G	mg/kg	< 0.050	-	-	< 0.050	< 0.050	_

o Aylerie					mg/ng	- 0.000			- 0.000	- 0.000	
Styrene	5	G	50	G	mg/kg	< 0.050	-	-	< 0.050	< 0.050	-
Methyl tert-Butyl Ether					mg/kg	< 0.200	-	-	< 0.200	< 0.200	-
m,p-Xylenes					mg/kg	< 0.050	-	-	< 0.050	< 0.050	-
1-Methylnaphthalene					mg/kg	< 0.010	-	-	< 0.010	< 0.010	-
SUM OF BTEX					mg/kg	< 0.1	-	-	< 0.1	< 0.1	-
BTEX+Styrene, Total					mg/kg	< 0.15	-	-	< 0.15	< 0.15	-

Notes

Yukon CSR, Soil, Schedule 2, Matrix Numerical Soil Standards - Industrial Land < Indicates parameter was below laboratory equipment detection limit. - Chemical not analyzed or criteria not defined.

Chemical not analyzed or criteria not defined.
Results expressed in milligrams per kilogram (mg/kg), unless otherwise indicated.
MCS = most conservative standard based on applicable site-specific standards
Referenced site-specific factors include: I = Intake of Contaminated Soil; T = Toxicity to Invertebrates and Plants;
AW-F = Groundwater Flow to Surface Water used by Freshwater Aquatic Life; AW-M = Groundwater Flow to Surface Water used by Marine Aquatic Life;G = Schedule 1 Standards
Sample type: N = Normal sample; FDA/FD = field duplicate available/field duplicate
EPH _{C16-19}/ EPH_{C16-22} = extractable petroleum hydrocarbons; carbon range C10-19/C19-32;
LEPH/ HEPH = light/heavy extractable petroleum hydrocarbons; VPH = volatile petroleum hydrocarbons
Analyte concentration equal to or exceeding Yukon CSR standard for Industrial land use
Analyte concentration equal to or exceeding Yukon CSR standard for proposed background standard
Proposed background standard for arsenic is 15 mg/kg and chromium is 420 mg/kg
applicable standard is pH dependent i the standard range shown is based on the pH range observed in the dataset (8.07-9.02).

60	
60	
420	

Γ			Location	MW20-02	MW20-03
			Sample Name Sample Date Laboratory ID	10171-01 May 28, 2020 WR2000250-001	10172-01 May 28, 2020 WR2000251-001
			Sample Type	N	N
Parameter	YT-CSR-GW-SCH3- AWF	MDL	Unit		
Field + Physical Dissolved Oxygen, field measured		-	mg/L	0.32	10.95
Conductivity, field measured Oxidation Reduction Potential, field measured		-	uS/cm mV	690.8 94.2	454.1 90.1
pH, field measured Temperature, field measured		-	pH units deg c	7.21 1.7	7.69 1.8
Hardness, Calcium Carbonate Hydrocarbons		0.6	mg/L	321	230
Acenaphthene		0.01	ug/L	< 0.010	< 0.010
Acenaphthylene	0.5	0.01	ug/L	< 0.010	< 0.010
Acridine		0.01	ug/L	< 0.010	< 0.010
Anthracene	1	0.01	ug/L	< 0.010	< 0.010
Benz(a)anthracene	1	0.01	ug/L	< 0.010	< 0.010
Benzo(a)pyrene	0.1	0.005	ug/L ug/L	< 0.0050 < 0.010	< 0.0050 < 0.010
Benzo(g,h,i)perylene Benzo(k)fluoranthene		0.01	ug/L	< 0.010	< 0.010
Benzo[b,j,k]fluoranthene		0.015	ug/L	< 0.015	< 0.015
Benzo(b,j) fluoranthene		0.01	ug/L	< 0.010	< 0.010
Chrysene		0.01	ug/L	< 0.010	< 0.010
Dibenz(a,h)anthracene		0.005	ug/L	< 0.0050	< 0.0050
Fluorantene	2 120	0.01	ug/L ug/L	< 0.010 < 0.010	< 0.010 < 0.010
Indeno(1,2,3-c,d)pyrene		0.01	ug/L	< 0.010	< 0.010
Naphthalene	10	0.05	ug/L	< 0.050	< 0.050
Phenanthrene	3	0.02	ug/L	< 0.020	< 0.020
Pyrene	0.2	0.01	ug/L	< 0.010	< 0.010
Quinoline	34	0.05	ug/L	< 0.050	< 0.050
1-Methylnaphthalene 2-methylnaphthalene	5.	0.03	ug/L	0.033	< 0.010
Extractable Petroleum Hydrocarbons (C10-C19)	5000	250	ug/L ug/L	0.059 < 250	< 0.010 < 250
Light Extractable Petroleum Hydrocarbons (C10-C19) Less PAHs	500	250	ug/L	< 250	< 250
Extractable Petroleum Hydrocarbons (C19-C32)		250	ug/L	< 250	< 250
Heavy Extractable Petroleum Hydrocarbons (C19-C32) Less PAHs	15000	250	ug/L	< 250	< 250
Volatile Hydrocarbons (C6-C10)		100	ug/L	< 100	< 100
Volatile Petroleum Hydrocarbons (C6-C10)	1500	100	ug/∟ ug/L	< 100	< 100
Metals, Dissolved Aluminum		1	ug/L	1.9	1.0
Antimony	200	0.1	ug/L	0.14	< 0.10
Arsenic	50	0.1	ug/L	0.24	1.04
Barium	10000	0.1	ug/L	69.2	26.9
Beryllium	53	0.1	ug/L	< 0.100	< 0.100
Bismuth	55	0.05	ug/L	< 0.050	< 0.050
Boron	0.1 - 0.6	10	ug/L	< 10	< 10
Cadmium		0.005	ug/L	0.0335	< 0.0050
Calcium		50	ug/L	76100	44300
Cesium		0.01	ug/L	< 0.010	0.684
Chromium	10	0.1	ug/L	< 0.10	2.85
Hexavalent Chromium (Cr(VI))	10	0.5	ug/L	< 0.50	2.70
Cobalt	9	0.1	ug/L	0.68	< 0.10
Copper	20 - 90	0.2	ug/L	0.50	0.47
Iron		10	ug/L	37	< 10
Lead	40 - 160	0.05	ug/L	< 0.050	< 0.050
Lithium		1	ug/L	3.2	2.2
Magnesium		5	ug/L	31800	29000
Manganese	1	0.1	ug/L	229	2.76
Mercury		0.005	ug/L	< 0.0050	< 0.0050
Molybdenum	10000	0.05	ug/L	1.81	1.39
Nickel	250 - 1500	0.5	ug/L	1.51	< 0.50
Phosphorus		50	ug/L	< 50	< 50
Potassium		50	ug/L	1090	580
Rubidium	10	0.2	ug/L	0.68	1.17
Selenium	10	0.05	ug/L	1.12	1.88
Silicon		50	ug/L	4520	7080
Silver	0.5 - 15	0.01	ug/L	< 0.010	< 0.010
Sodium		50	ug/L	7400	5330
Strontium Sulphur		0.2 500	ug/L	380 28000	122 12100
Tellurium		0.2	ug/L ug/L	< 0.20	< 0.20
Thallium	3	0.01	ug/L	< 0.010	< 0.010
Thorium-232		0.1	ug/L	< 0.10	< 0.10
Tin	1000	0.1	ug/L	< 0.10	< 0.10
Titanium		0.3	ug/L	< 0.30	< 0.30
Tungsten		0.1	ug/L	< 0.10	< 0.10
Uranium	3000	0.01	ug/L	1.42	0.975
Vanadium		0.5	ug/L	< 0.50	2.19
Zinc	75 - 2400	1	ug/L	1.9	< 1.0
Zirconium		0.2	ug/L	< 0.20	< 0.20
VOCs + BTEX Benzene	4000	0.5	ug/L	< 0.50	< 0.50
Ethylbenzene	2000	0.5	ug/L	< 0.50	< 0.50
Styrene	720	0.5	ug/L	< 0.50	< 0.50
Toluene	390	0.5	ug/L	< 0.50	< 0.50
Xylenes, Total		0.75	ug/L	< 0.75	< 0.75
o-Xylene		0.5	ug/L	< 0.50	< 0.50
mp-Xylenes		0.5	ug/L	< 0.50	< 0.50
Methyl tert-Butyl Ether		0.5	ug/L	< 0.50	< 0.50
Bromodichloromethane (BDCM)		0.5	ug/L	< 0.50	< 0.50
Bromoform (Tribromomethane)	130	0.5	ug/L	< 0.50	< 0.50
Carbon Tetrachloride		0.5	ug/L	< 0.50	< 0.50
Chlorobenzene	13	0.5	ug/L	< 0.50	< 0.50
Chloroethane		0.5	ug/L	< 0.50	< 0.50
Chloroform	20	0.5	ug/L	< 0.50	< 0.50
Chloroform		0.5	ug/L	< 0.50	< 0.50
Dichloromethane (DCM) (Methylene Chloride)	980	0.5	ug/L	< 0.50	< 0.50
Dibromochloromethane (DBCM)		0.5	ug/L	< 0.50	< 0.50
1,2-dichlorobenzene		0.5	ug/L	< 0.50	< 0.50
1,3-dichlorobenzene	1500	0.5	ug/L	< 0.50	< 0.50
1,4-dichlorobenzene	260	0.5	ug/L	< 0.50	< 0.50
1,1-dichloroethane	1000	0.5	ug/L	< 0.50	< 0.50
1,2-dichloroethane		0.5	ug/L	< 0.50	< 0.50
1,1-dichloroethene	1000	0.5	ug/L	< 0.50	< 0.50
1,2-dichloroethylene (cis) (1,2-dichloroethene) (cis)		0.5	ug/L	< 0.50	< 0.50
1,2-dichloroethylene (trans) (1,2-dichloroethene) (trans)		0.5	ug/L	< 0.50	< 0.50
1,2-dichloropropane (Propylene Dichloride)		0.5	ug/L	< 0.50	< 0.50
1,3-dichloropropene (cis)		0.5	ug/L	< 0.50	< 0.50
1,3-dichloropropene (trans)		0.5	ug/L	< 0.50	< 0.50
1,3-dichloropropene, total		0.75	ug/L ug/L	< 0.75 < 0.50	< 0.75 < 0.50
1,1,1,2-tetrachloroethane		0.5			
1,1,1,2-tetrachloroethane 1,1,2,2-tetrachloroethane Tetrachloroethylene (PCE/PERC)	1100	0.5 0.2 0.5	ug/L ug/L	< 0.20 < 0.50	< 0.20 < 0.50
1,1,2,2-tetrachloroethane Tetrachloroethylene (PCE/PERC) 1,1,1-trichloroethane	1100	0.2 0.5 0.5	ug/L ug/L ug/L	< 0.50 < 0.50	< 0.20 < 0.50 < 0.50
1,1,2,2-tetrachloroethane	1100	0.2	ug/L	< 0.50	< 0.20
Tetrachloroethylene (PCE/PERC)	200	0.5	ug/L		< 0.50

Vinyi Chiorde (Chiordeareno) Notes Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standards - Aquatic Life, Freshwater < Indicates parameter was below laboratory equipment detection limit. - Chemical not analyzed or criteria not defined. Sample type: N = Normal sample; FDA/FD = field duplicate available/field duplicate

	Location		BH20-04	BH20-04			
	Sample Name		BH20-04A	BH20-04B			
	Sample Date		April 25, 2019	April 25, 2019			
	Sample Depth	Minimum	4.3-4.6	4.3-4.6	Mean	Relative Percent	Difference Fact
	Laboratory ID	Dectection Limit	WR2000176-003	WR2000176-004		Difference	
Parameter	Unit					1	8
Field + Physical	onit						
PID	ppm	-	0	0	-	-	-
Moisture, Percent	%	-	-	-	-	-	-
э́н	pH units	-	8.12	8.21	-	-	-
Netals							
Aluminum	mg/kg	50	14200	15300	14750	7%	NA
Antimony	mg/kg	0.10	0.90	1.03	0.965	13%	NA
Arsenic	mg/kg	0.10	10.5	11.8	11.15	12%	NA
Barium	mg/kg	0.5	227	150	188.5	41%	NA
Beryllium	mg/kg	0.1	0.21	0.24	0.225	NA	0.30
Bismuth	mg/kg	0.2	< 0.20	< 0.20	-	-	-
Boron	mg/kg	5	< 5.0	< 5.0	-	-	-
Cadmium	mg/kg	0.02	0.228	0.227	0.2275	0%	NA
Calcium	mg/kg	50	2600	3370	2985	26%	NA
Chromium	mg/kg	0.5	41.1	41.5	41.3	1%	NA
Chromium Trivalent (Cr(III))	mg/kg	0.03	-	-	-	-	-
Chromium Hexavalent (Cr(VI))	mg/kg	0.1	-	-	-	-	-
Cobalt	mg/kg	0.1	12.3	19.2	15.75	44%	NA
Copper	mg/kg	0.5	46.0	46.2	46.1	0%	NA
ron	mg/kg	50	25300	26600	25950	5%	NA
.ead	mg/kg	0.5	4.57	6.87	5.72	40%	NA
ithium	mg/kg	2	14.0	16.1	15.05	14%	NA
Magnesium	mg/kg	20	12000	12200	12100	2%	NA
Manganese	mg/kg	1	503	512	507.5	2%	NA
Mercury	mg/kg	0.05	< 0.0500	< 0.0500	-	-	-
Molybdenum	mg/kg	0.1	2.27	2.26	2.265	0%	NA
lickel	mg/kg	0.5	27.4	26.9	27.15	2%	NA
Phosphorus	mg/kg	50	562	770	666	31%	NA
Potassium	mg/kg	100	420	460	440	NA	0.40
Selenium	mg/kg	0.2	0.41	0.39	0.4	NA	0.10
Silver	mg/kg	0.1	< 0.10	< 0.10	-	-	-
Sodium	mg/kg	50	86	120	103	NA	0.68
Strontium	mg/kg	0.5	21.4	25.0	23.2	16%	NA
Sulphur (S8)	mg/kg	1000	< 1000	< 1000	-	-	-
hallium	mg/kg	0.05	< 0.050	< 0.050	-	-	-
ïn	mg/kg	2	< 2.0	< 2.0	-	-	-
ïtanium	mg/kg	1	342	364	353	6%	NA
ungsten	mg/kg	0.5	4.18	6.95	5.565	50%	NA
Jranium	mg/kg	0.05	0.606	0.650	0.628	7%	NA
/anadium	mg/kg	0.2	52.0	54.4	53.2	5%	NA
Zinc	mg/kg	2	72.1	70.5	71.3	2%	NA
Zirconium	mg/kg	1	1.9	2.0	1.95	NA	0.10
эΗ	pH units		8.12	8.21	8.165	1%	NA

Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standards - Aquatic Life, Freshwater < Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

QA/QC = quality assurance/ quality control; FDA/FD = field duplicate available/field duplicate

Method Detection Limit (MDL) = minimum concentration that could be measured by the laboratory.

Mean = average value calculated of a field duplicate pair (the FDA and the FD). Relative Percent Difference is calculated when the mean is greater than five times the method detection limit; Golder's internal QA/QC target for soil is less than 35%.

Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target for groundwater is less than 2. BOLD indicates parameter analysed exceeds Golder's internal QA/QC targets.

NC = not calculated; NA = not applicable

			Location	MW20-02	MW20-02			
				10171-01	10171-02			
			Sample Date	May 28, 2020	May 28, 2020	Mean	Relative Percent	Difference Factor
			Laboratory ID	WR2000250- 001	WR2000250- 002		Difference	Factor
Parameter	YT-CSR-GW-SCH3- AWF	MDL	Unit				<u>,</u>	-12
Field + Physical			mg/l	0.22		NC	NC	NA
Dissolved Oxygen, field measured Conductivity, field measured		-	mg/L uS/cm	0.32 690.8	-	NC	NC	NA NA
Oxidation Reduction Potential, field measured		-	mV	94.2	-	NC	NC	NA
pH, field measured Temperature, field measured		-	pH units deg c	7.21 1.7	-	NC NC	NC NC	NA NA
Hardness, Calcium Carbonate		0.6	mg/L	321	326	324	0	NA
Hydrocarbons		0.01		10.010	10.010	NC	NC	NA
Acenaphthene Acenaphthylene		0.01 0.01	ug/L ug/L	< 0.010 < 0.010	< 0.010 < 0.010	NC	NC	NA NA
Acridine	0.5	0.01	ug/L	< 0.010	< 0.010	NC	NC	NA
Anthracene	1	0.01	ug/L	< 0.010	< 0.010	NC	NC	NA
Benz(a)anthracene Benzo(a)pyrene	1 0.1	0.01 0.005	ug/L ug/L	< 0.010 < 0.0050	< 0.010 < 0.0050	NC NC	NC NC	NA NA
Benzo(g,h,i)perylene	0.1	0.003	ug/L	< 0.000	< 0.0030	NC	NC	NA
Benzo(k)fluoranthene		0.01	ug/L	< 0.010	< 0.010	NC	NC	NA
Benzo[b,j,k]fluoranthene		0.015	ug/L	< 0.015	< 0.015	NC	NC	NA
Benzo(b,j) fluoranthene Chrysene		0.01 0.01	ug/L ug/L	< 0.010 < 0.010	< 0.010 < 0.010	NC NC	NC NC	NA NA
Dibenz(a,h)anthracene		0.005	ug/L	< 0.0050	< 0.0050	NC	NC	NA
luoranthene	2	0.01	ug/L	< 0.010	< 0.010	NC	NC	NA
	120	0.01	ug/L	< 0.010	< 0.010	NC	NC	NA
ndeno(1,2,3-c,d)pyrene Japhthalene	10	0.01 0.05	ug/L ug/L	< 0.010 < 0.050	< 0.010 < 0.050	NC NC	NC NC	NA NA
Phenanthrene	3	0.05	ug/L ug/L	< 0.050	< 0.050	NC	NC	NA
Pyrene	0.2	0.01	ug/L	< 0.010	< 0.010	NC	NC	NA
Quinoline	34	0.05	ug/L	< 0.050	< 0.050	NC 0.025	NC	NA
-Methylnaphthalene P-methylnaphthalene		0.01 0.01	ug/L ug/L	0.033 0.059	0.037 0.063	0.035 0.061	NA 0.066	0.4 NA
Extractable Petroleum Hydrocarbons (C10-C19)	5000	250	ug/L	< 250	< 250	NC	NC	NA
ight Extractable Petroleum Hydrocarbons (C10-C19) Less PAHs	500	250	ug/L	< 250	< 250	NC	NC	NA
Extractable Petroleum Hydrocarbons (C19-C32)		250	ug/L	< 250	< 250	NC NC	NC NC	NA
Heavy Extractable Petroleum Hydrocarbons (C19-C32) Less PAHs /olatile Hydrocarbons (C6-C10)	15000	250 100	ug/L ug/L	< 250 < 100	< 250 < 100	NC	NC	NA NA
/olatile Petroleum Hydrocarbons (C6-C10)	1500	100	ug/L	< 100	< 100	NC	NC	NA
Aetals, Dissolved						0.0		0.0
luminum Intimony	200	1 0.1	ug/L ug/L	1.9 0.14	2.5 0.13	2.2 0.14	NA NA	0.6 0.1
rsenic	50	0.1	ug/L	0.24	0.24	0.24	NA	0.0
Barium	10000	0.1	ug/L	69.2	70.4	69.8	0.0	NA
Beryllium	53	0.1	ug/L	< 0.100	< 0.100 < 0.050	NC NC	NC NC	NA
lismuth Boron		0.05 10	ug/L ug/L	< 0.050 < 10	< 0.050 < 10	NC	NC	NA NA
Cadmium	0.1 - 0.6	0.005	ug/L	0.0335	0.0324	0.0330	0.0334	NA
Calcium		50	ug/L	76100	77100	76600	0	NA
Cesium Chromium		0.01 0.1	ug/L ug/L	< 0.010 < 0.10	< 0.010 < 0.10	NC NC	NC NC	NA NA
Hexavalent Chromium (Cr(VI))	10	0.5	ug/L	< 0.10	< 0.10	NC	NC	NA
Cobalt	9	0.1	ug/L	0.68	0.67	0.68	0.01	NA
Copper	20 - 90	0.2	ug/L	0.50	0.52	0.51	NA	0.1
ron .ead	40 - 160	10 0.05	ug/L ug/L	37 < 0.050	38 < 0.050	38 NC	NA NC	0.1 NA
ithium	10 100	1	ug/L	3.2	3.3	3.3	NA	0.1
/lagnesium		5	ug/L	31800	32500	32150	0	NA
/anganese	4	0.1 0.005	ug/L	229	235	232 NC	0 NC	NA NA
/lercury /lolybdenum	1 10000	0.005	ug/L ug/L	< 0.0050 1.81	< 0.0050 1.78	1.80	0.02	NA
Vickel	250 - 1500	0.5	ug/L	1.51	1.56	1.54	NA	0.1
Phosphorus		50	ug/L	< 50	< 50	NC	NC	NA
Potassium Rubidium		50 0.2	ug/L ug/L	1090 0.68	1130 0.70	1110 0.69	0 NA	NA 0.1
Selenium	10	0.05	ug/L	1.12	0.950	1.035	0.164	NA
Silicon		50	ug/L	4520	4560	4540	0	NA
Silver Sodium	0.5 - 15	0.01 50	ug/L	< 0.010 7400	< 0.010 7650	NC 7525	NC 0	NA NA
Strontium		50 0.2	ug/L ug/L	7400 380	7650 384	382	0	NA NA
Sulphur		500	ug/L	28000	27600	27800	0	NA
ellurium	_	0.2	ug/L	< 0.20	< 0.20	NC	NC	NA
Thallium Thorium-232	3	0.01 0.1	ug/L ug/L	< 0.010 < 0.10	< 0.010 < 0.10	NC NC	NC NC	NA NA
ïn		0.1	ug/L	< 0.10	< 0.10	NC	NC	NA
ïtanium	1000	0.3	ug/L	< 0.30	< 0.30	NC	NC	NA
ungsten	2000	0.1	ug/L	< 0.10	< 0.10	NC	NC 0.06	NA
Iranium ′anadium	3000	0.01 0.5	ug/L ug/L	1.42 < 0.50	1.51 < 0.50	1.47 NC	0.06 NC	NA NA
linc	75 - 2400	1	ug/L	1.9	2.1	2.0	NA	0.2
lirconium		0.2	ug/L	< 0.20	< 0.20	NC	NC	NA
OCs + BTEX	4000	0.5	//	-050	- 0.50	NC	NC	N L A
enzene (thylbenzene	4000 2000	0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50	NC	NC	NA NA
tyrene	720	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
oluene	390	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
ylenes, Total -Yvlene		0.75 0.5	ug/L	< 0.75	< 0.75 < 0.50	NC NC	NC NC	NA
-Xylene n,p-Xylenes		0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50	NC	NC	NA NA
lethyl tert-Butyl Ether		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
romodichloromethane (BDCM)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
romoform (Tribromomethane) carbon Tetrachloride	130	0.5 0.5	ug/L	< 0.50 < 0.50	< 0.50 < 0.50	NC NC	NC NC	NA NA
arbon Tetrachloride hlorobenzene	130	0.5	ug/L ug/L	< 0.50	< 0.50	NC	NC	NA
hloroethane		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
hloroform	20	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
Chloromethane	980	0.5 0.5	ug/L	< 0.50 < 0.50	< 0.50 < 0.50	NC NC	NC NC	NA NA
Dichloromethane (DCM) (Methylene Chloride) Dibromochloromethane (DBCM)	900	0.5	ug/L ug/L	< 0.50	< 0.50 < 0.50	NC NC	NC NC	NA NA
,2-dichlorobenzene		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
,3-dichlorobenzene	1500	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
,4-dichlorobenzene	260	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
,1-dichloroethane ,2-dichloroethane	1000	0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50	NC NC	NC NC	NA NA
I,1-dichloroethene	1000	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
	1					1		

1,1-dichloroethene		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,2-dichloroethylene (cis) (1,2-dichloroethene) (cis)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,2-dichloroethylene (trans) (1,2-dichloroethene) (trans)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,2-dichloropropane (Propylene Dichloride)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,3-dichloropropene (cis)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,3-dichloropropene (trans)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,3-dichloropropene, total		0.75	ug/L	< 0.75	< 0.75	NC	NC	NA
1,1,1,2-tetrachloroethane		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,1,2,2-tetrachloroethane		0.2	ug/L	< 0.20	< 0.20	NC	NC	NA
Tetrachloroethylene (PCE/PERC)	1100	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,1,1-trichloroethane		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
1,1,2-trichloroethane		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
Trichloroethylene (TCE)	200	0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
Trichlorofluoromethane (Freon 11)		0.5	ug/L	< 0.50	< 0.50	NC	NC	NA
Vinyl Chloride (Chloroethene)		0.4	ug/L	< 0.40	< 0.40	NC	NC	NA

Notes:
Notes:
Vukon CSR, Soil, Schedule 3, Generic Numerical Water Standards - Aquatic Life, Freshwater
Indicates parameter was below laboratory equipment detection limit.
- Chemical not analyzed or criteria not defined.
Dervike supersonal inter (wr/l) vulces attention indicated

Chemical not analyzed or criteria not defined.
 Results expressed in micrograms per litre (µg/L), unless otherwise indicated.
 QA/QC = quality assurance/ quality control; FDA/FD = field duplicate available/field duplicate
 Method Detection Limit (MDL) = minimum concentration that could be measured by the laboratory.
 Mean = average value calculated of a field duplicate pair (the FDA and the FD).
 Relative Percent Difference is calculated when the mean is greater than five times the method detection limit; Golder's internal QA/QC target for groundwater is less than 20%.
 Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target for groundwater is less than 2.
 BOLD indicates parameter analysed exceeds Golder's internal QA/QC targets.
 NC = not calculated; NA = not applicable

			Sample Name Sample Date Laboraotry ID	FIELD BLANK 10172-02 May 28, 2020 WR2000251-002	TRAVEL BLANK 11714-02 May 28, 2020 WR2000252-002
	YT-CSR-GW-SCH3-		-	WR2000251-002	WR2000252-002
Parameter	AWF	MDL	Unit		
i ield + Physical Dissolved Oxygen, field measured		-	mg/L	-	-
Conductivity, field measured		-	uS/cm	-	-
Dxidation Reduction Potential, field measured H, field measured		-	mV pH units	-	-
emperature, field measured		-	deg c	-	-
lardness, Calcium Carbonate		0.6	mg/L	< 0.60	-
lydrocarbons		0.01	ug/L	< 0.010	_
Acenaphthylene		0.01	ug/L	< 0.010	-
Acridine	0.5	0.01	ug/L	< 0.010	-
Anthracene Benz(a)anthracene	1 1	0.01 0.01	ug/L ug/L	< 0.010 < 0.010	-
Benzo(a)pyrene	0.1	0.005	ug/L	< 0.0050	-
Benzo(g,h,i)perylene		0.01	ug/L	< 0.010	-
Benzo(k)fluoranthene Benzo[b,j,k]fluoranthene		0.01 0.015	ug/L ug/L	< 0.010 < 0.015	-
Benzo(b,j) fluoranthene		0.01	ug/L	< 0.010	-
Chrysene		0.01	ug/L	< 0.010	-
Dibenz(a,h)anthracene Fluoranthene	2	0.005 0.01	ug/L ug/L	< 0.0050 < 0.010	-
luorene	120	0.01	ug/L	< 0.010	-
ndeno(1,2,3-c,d)pyrene	40	0.01	ug/L	< 0.010	-
laphthalene Phenanthrene	10 3	0.05 0.02	ug/L ug/L	< 0.050 < 0.020	-
Pyrene	0.2	0.01	ug/L	< 0.010	-
Quinoline Mathulaansthalana	34	0.05	ug/L	< 0.050	-
-Methylnaphthalene I-methylnaphthalene		0.01 0.01	ug/L ug/L	< 0.010 < 0.010	-
xtractable Petroleum Hydrocarbons (C10-C19)	5000	250	ug/L	< 250	-
ight Extractable Petroleum Hydrocarbons (C10-C19) Less PAHs	500	250	ug/L	< 250	-
Extractable Petroleum Hydrocarbons (C19-C32) leavy Extractable Petroleum Hydrocarbons (C19-C32) Less PAHs		250 250	ug/L ug/L	< 250 < 250	-
/olatile Hydrocarbons (C6-C10)	15000	100	ug/L	< 100	< 100
/olatile Petroleum Hydrocarbons (C6-C10)	1500	100	ug/L	< 100	< 100
Numinum	+	1	ug/L	1.5	-
Intimony	200	0.1	ug/L	< 0.10	-
Arsenic Barium	50 10000	0.1 0.1	ug/L ug/L	< 0.10 1.35	-
Beryllium	53	0.1	ug/L	< 0.100	-
Bismuth		0.05	ug/L	< 0.050	-
Boron Cadmium	0.1 - 0.6	10 0.005	ug/L ug/L	< 10 < 0.0050	-
Calcium	0.1 - 0.0	50	ug/L	< 50	-
Cesium		0.01	ug/L	< 0.010	-
Chromium łexavalent Chromium (Cr(VI))	10	0.1 0.5	ug/L ug/L	< 0.10 < 0.50	-
Cobalt	9	0.1	ug/L	< 0.10	-
Copper	20 - 90	0.2	ug/L	0.95	-
ron .ead	40 - 160	10 0.05	ug/L ug/L	< 10 < 0.050	-
ithium	40 100	1	ug/L	< 1.0	-
Agnesium		5	ug/L	< 5.0	-
/langanese /lercury	1	0.1 0.005	ug/L ug/L	< 0.10 < 0.0050	-
Nolybdenum	10000	0.05	ug/L	0.509	-
	250 - 1500	0.5	ug/L	< 0.50	-
Phosphorus Potassium		50 50	ug/L ug/L	< 50 < 50	-
Rubidium		0.2	ug/L	< 0.20	-
Selenium Silicon	10	0.05 50	ug/L	< 0.050 < 50	-
Silver	0.5 - 15	0.01	ug/L ug/L	< 0.010	-
Sodium		50	ug/L	< 50	-
Strontium Sulphur		0.2 500	ug/L ug/L	< 0.20 < 500	-
ellurium		0.2	ug/L ug/L	< 0.20	-
Thallium	3	0.01	ug/L	< 0.010	-
Thorium-232 Tin		0.1 0.1	ug/L ug/L	< 0.10 < 0.10	-
ïtanium	1000	0.3	ug/L	< 0.30	-
ungsten	3000	0.1 0.01	ug/L	< 0.10 < 0.010	-
Jranium /anadium	3000	0.5	ug/L ug/L	< 0.50	-
linc	75 - 2400	1	ug/L	< 1.0	-
Circonium COCs + BTEX		0.2	ug/L	< 0.20	-
Benzene	4000	0.5	ug/L	< 0.50	< 0.50
thylbenzene	2000	0.5	ug/L	< 0.50	< 0.50
Styrene Toluene	720 390	0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50
ylenes, Total	390	0.5	ug/L ug/L	< 0.50	< 0.50
-Xylene		0.5	ug/L	< 0.50	< 0.50
n,p-Xylenes lethyl tert-Butyl Ether		0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50
Bromodichloromethane (BDCM)		0.5	ug/L ug/L	< 0.50	< 0.50
romoform (Tribromomethane)		0.5	ug/L	< 0.50	< 0.50
Carbon Tetrachloride Chlorobenzene	130 13	0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50
Chloroethane	10	0.5	ug/L ug/L	< 0.50	< 0.50
Chloroform	20	0.5	ug/L	< 0.50	< 0.50
Chloromethane Dichloromethane (DCM) (Methylene Chloride)	980	0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50
Dibromochloromethane (DBCM)	000	0.5	ug/L ug/L	< 0.50	< 0.50
,2-dichlorobenzene	4500	0.5	ug/L	< 0.50	< 0.50
,3-dichlorobenzene ,4-dichlorobenzene	1500 260	0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50
,1-dichloroethane	200	0.5	ug/L ug/L	< 0.50	< 0.50
,2-dichloroethane	1000	0.5	ug/L	< 0.50	< 0.50
,1-dichloroethene ,2-dichloroethylene (cis) (1,2-dichloroethene) (cis)		0.5 0.5	ug/L ug/L	< 0.50 < 0.50	< 0.50 < 0.50

1,2-dichloroethylene (trans) (1,2-dichloroethene) (trans)		0.5	ug/L	< 0.50	< 0.50
1,2-dichloropropane (Propylene Dichloride)		0.5	ug/L	< 0.50	< 0.50
1,3-dichloropropene (cis)		0.5	ug/L	< 0.50	< 0.50
1,3-dichloropropene (trans)		0.5	ug/L	< 0.50	< 0.50
1,3-dichloropropene, total		0.75	ug/L	< 0.75	< 0.75
1,1,1,2-tetrachloroethane		0.5	ug/L	< 0.50	< 0.50
1,1,2,2-tetrachloroethane		0.2	ug/L	< 0.20	< 0.20
Tetrachloroethylene (PCE/PERC)	1100	0.5	ug/L	< 0.50	< 0.50
1,1,1-trichloroethane		0.5	ug/L	< 0.50	< 0.50
1,1,2-trichloroethane		0.5	ug/L	< 0.50	< 0.50
Trichloroethylene (TCE)	200	0.5	ug/L	< 0.50	< 0.50
Trichlorofluoromethane (Freon 11)		0.5	ug/L	< 0.50	< 0.50
Vinyl Chloride (Chloroethene)		0.4	ug/L	< 0.40	< 0.40
		•			
Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard		ter			
Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard		ter			
Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard < Indicates parameter was below laboratory equipment detection limi		ter			
Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard < Indicates parameter was below laboratory equipment detection limi - Chemical not analyzed or criteria not defined.	t.	ter			
Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard < Indicates parameter was below laboratory equipment detection limi - Chemical not analyzed or criteria not defined. Results expressed in micrograms per litre (μg/L), unless otherwise in	t. dicated.	ter			
Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard < Indicates parameter was below laboratory equipment detection limi - Chemical not analyzed or criteria not defined. Results expressed in micrograms per litre (µg/L), unless otherwise in QA/QC = quality assurance/ quality control; FB/TB = field blank/trave	t. dicated. I blank				
Notes: Yukon CSR, Soil, Schedule 3, Generic Numerical Water Standard < Indicates parameter was below laboratory equipment detection limi - Chemical not analyzed or criteria not defined. Results expressed in micrograms per litre (µg/L), unless otherwise in QA/QC = quality assurance/ quality control; FB/TB = field blank/trave Method Detection Limit (MDL) = minimum concentration that could be BOLD indicates parameter analysed exceeds Golder's internal QA/Q	t. dicated. I blank e measured by the laborator				

REFERENCES 1. TRANSPORTATION FEATURES OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 2. BASE MAP SOURCES: ESRI, HERE, DELORME, INCREMENT P CORP., NPS, NRCAN, ORDNANCE SURVEY, © OPENSTREETMAP CONTRIBUTORS, USGS, NGA, NASA, CGIAR, N ROBINSON, NCEAS, NLS, OS, NMA, GEODATSTYRELSEN, RUISKWATERSTAAT, GSA, GEOLAND, FEMA, INTERMAP AND THE GIS USER COMMUNITY. 3. INSET MAP DATA OBTAINED FROM ESRI. COORDINATE SYSTEM: NAD 1983 UTM ZONE 8N

1:50,000

YUKON GOVERNMENT - COMMUNITY SERVICES AND LAND DEVELOPMENT BRANCH

PROJECT

2

KILOMETRES

PHASE II ENVIRONMENTAL SITE ASSESSMENT, LOT 1059, DAWSON CITY TITLE

SITE LOCATION

CONSULTANT 2020-07-24 YYYY-MM-DD DESIGNED KB GOLDER PREPARED CDB/MH REVIEWED EA APPROVED PROJECT NO. PHASE FIGURE REV. 19131856 6000/6003 А 1

★

PROJECT LOCATION

HIGHWAY

WATERBODY

MAJOR ROAD

LOCAL ROAD

LEGEND

PROJECT LOCATION PROPERTY BOUNDARY HIGHWAY

LOCAL ROAD

0	60	120
SCALE 1	1:3,000	METRES

REFERENCES 1. PARCELS AND WATER FEATURES OBTAINED FROM THE YUKON GOVERNMENT. 2. TRANSPORTATION FEATURES OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3.IMAGERY COPYRIGHT © 20170903 ESRI AND ITS LICENSORS. SOURCE: MAXAR. USED UNDER LICENSE, ALL RIGHTS RESERVED. COORDINATE SYSTEM: NAD 1983 UTM ZONE 8N

CLIENT

YUKON GOVERNMENT - COMMUNITY SERVICES AND LAND DEVELOPMENT BRANCH

PROJECT

PHASE II ENVIRONMENTAL SITE ASSESSMENT, LOT 1059, DAWSON CITY TITLE

SITE PLAN - LOT 1059

CONSULTANT		YYYY-MM-DD	2020-07-24	
		DESIGNED	KB	
	GOLDER	PREPARED	CDB/MH	
		REVIEWED	EA	
		APPROVED		
PROJECT NO.	PHASE	R	EV.	FIGURE
19131856	6000/6003	A		2

LEGEND

PROJECT DATA

PROJECT LOCATION

BOREHOLE LOCATION

-MONITORING WELL LOCATION

SAMPLE RESULTS

ONE OR MORE PARAMETER CONCENTRATIONS IS GREATER THAN YT CSR STANDARDS

PARAMETER CONCENTRATIONS ARE LESS THAN YT CSR STANDARDS

BASE DATA

- HIGHWAY
- ----- MAJOR ROAD
- LOCAL ROAD
- WATERCOURSE

PROPERTY BOUNDARY

Parameter	CSR - RL	CSR - IL	Proposed Background
Chromium	300	700	420
Chromium Trivalent (Cr(III))	65	65	-
Cobalt	50	300	-

NOT FOR CONSTRUCTION

0	40	80
1.1 750		METDES

NOTE(S)

1. LOCATIONS ARE APPROXIMATE. 2. mg/kg: MILLIGRAMS PER KILOGRAM 3. FDA/FD: FIELD DUPLICATE AVAILABLE/ FIELD DUPLICATE

- EPH C19-C32: EXTRACTABLE PERTROLEUM HYDROCARBONS. CARBON RANGE C19-C32
 HEPH C19-C32: LESS PAHS: HEAVY EXTRACTABLE PERTROLEUM HYDROCARBONS. CARBON 5. HEPH C19-C32 LESS PARS: HEAVY EXTRACTABLE PERTROLEUM HYDROCARBO RANGE C19-C32 6. PARS: POLYCYCLIC AROMATIC HYDROCARBONS 7. YT CSR: YUKON CONTAMINATED SITES REGULATION 8. RL: YUKON CONTAMINATED SITES REGULATION FOR RESIDENTIAL LAND USE 9. IL: YUKON CONTAMINATED SITES REGULATION FOR INDUSTRIAL LAND USE

REFERENCE(S)

1. PARCELS AND WATER FEATURES OBTAINED FROM THE YUKON GOVERNMENT. 2. TRANSPORTATION FEATURES OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL

TRANSPORTATION FEATURES OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED.
 MAGERY COPYRIGHT © 20150905 ESRI AND ITS LICENSORS. SOURCE: DIGITAL GLOBE. USED UNDER LICENSE, ALL RIGHTS RESERVED.
 CONTAMINTED SITES REGULATION (CSR; YT REG. O.I.C. 2002/171, UPDATED TO 30 SEPTEMBER 2014).
 BASE MAP: TOPOGRAPHIC MAP © ESRI AND ITS LICENSORS. USED UNDER LICENSE, ALL RIGHTS RESERVED.

COORDINATE SYSTEM: NAD 1983 UTM ZONE 7N

CLIENT

YUKON GOVERNMENT - COMMUNITY SERVICES AND LAND DEVELOPMENT BRANCH

PROJECT

PHASE II ENVIRONMENTAL SITE ASSESSMENT, LOT 1059, DAWSON CITY

SOIL AND BOREHOLE LOCATIONS AND RESULTS

LEGEN	כ				
-	MONITO	RING WELL LOCA	ATION		
	HIGHWA				
	LOCAL F				
		COURSE			
	PROPER	RTY BOUNDARY			
-	GROUN	DWATER CONTO	UR, MAY 2020		
\rightarrow	GROUN	DWATER FLOW D	IRECTION		
8					
7110					
+					
		0	60	120	
		1:3,000		METRES	
DEEED					
1. PARC		ATER FEATURES OB			
RESOU	RCES CANA	DA. ALL RIGHTS RES	ERVED.		PARTMENT OF NATURAL
LICENS	E, ALL RIGH	ITS RESERVED.		SORS. SOUR	CE: MAXAR. USED UNDER
COORD	INATE SYST	FEM: NAD 1983 UTM Z	CONE 8N		
CLIENT					
		ERNMENT – C	OMMUNITY	SERVICE	ES AND LAND
DEVE	LOPME	NT BRANCH			
	т ⁻				
PROJEC		VIRONMENTAL	SITE ASSE	SSMENT	,
LOT '		WSON CITY			
			DE MAY 200	0	
8		TER CONTOUR	NO, WIAT 202	.0	
CONSU	LTANT		YYYY-MM	-DD	2020-07-14
			DESIGNE		KLM
					JP/MH
		OLDE	REVIEWE	D	EA
	-		APPROVE	D	
				REV	FIGURE

PROJECT NO. 19131856 CONTROL

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANSI

FIGURE

rev. A

APPENDIX A

Borehole Logs

PROJECT No.: 19131856
CLIENT: Yukon Government, Community Services PROJECT: 4GCS LOCATION: Dawson, YK

RECORD OF BOREHOLE: BH20-03

SHEET 1 OF 1 DATUM: Ground Surface

DRILLING DATE: April, 25, 2020 DRILLING CONTRACTOR: Metro Drilling

	Т	8	SOIL PROFILE			GEO	TEC	CH S.	AMP	LES	СН	EMISTRY SAMF	PLES	PI	D			•	DYN	AMIC		TRAT	10N S/0.3m		PIEZOMETER,
DEPTH SCALE METRES		DRILLING METHOD		OT										pp		4 6	58	Ð			40 (· · ·	ADDITIONAL LAB. TESTING	STANDPIPE OR
PTH S		NG N	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	CORE No.	CORE RECOVERY %	MBEF	SCN	ANALYSED	PI	D	1			V	/ATE	R CO	NTEN	IT %	BDITIO	THERMISTOR INSTALLATION
DEF		SRILL SRILL		STRA	DEPTH (m)	IN	F	BLOV	S	RECO	IN		ANA	рр							⊖ ^W 20 3		H WI	LAE	
-			Ground Surface							_					2	4 6	8 6		1		20 3	30	40		
-			(GW) GRAVEL and COBBLE, some silty, some sand; light brown; moist		0.00																				
E			sity, some sand, light brown, moist																						
F				.•																					
E										20															
-		(isi		.•																					_
-	onic [n. Cas												T3											-
E	Track Mounted Sonic Drill	Sonic (Casing:5 in. Casing;)	(GW) GRAVEL and COBBLE trace	-	1.52	1	сс				1	BH20-03A		Ð											
-	k Mou	(Casi	(GW) GRAVEL and COBBLE, trace silt, trace sand; brown; dry	•																					
F	2 Lac	Sonic																							-
E						2	сс			15	2	BH20-03B													
F																									
-																									
_	3																								-
E			End of Borehole.		3.05																				
Ē																									
F																									-
-	4																								
_	1																								
-																									
E																									
-																									
-	5																								-
E																									
F																									-
E																									
-	6																								
F																									-
E																									
1																									
§ _	7																								_
l l																									
CE	в																								-
OKEHC																									
- 																									-
L L																									
	9																								_
																									-
I I																									
1 1	1																								_
	_			1	I		_					I	1	1	S) DIL (CLAS	SIF	ICAT	ION	I SYST	EM:	GACS	ц З	L
			CALE					Ć		C	; (OLD	Ε	R									KB/EF		
1 Natio	: 5	50						V													CH	ECKE	ED: EA	4	

PROJECT No.: 19131856
CLIENT: Yukon Government, Comm

RECORD OF MONITORING WELL: MW20-02

unity Services PROJECT: 4GCS LOCATION: Dawson, YK

DRILLING DATE: April, 25, 2020 DRILLING CONTRACTOR: Metro Drilling

MEIKES	ETHOD	SOIL PROFILE				<u> </u>		-	CHEMISTRY SAMP		PIE	n	~	•				TRATION	NAL	PIEZOMET STANDPIF OR	
	DRILLING RIG DRILLING METHOD		STRATA PLOT (m) (m) (m) (m)	TH S	TYPE	BLOWS/0.3m	CORE No. CORE	RECOVERY %	SCN	ANALYSED	PIE ppi 2)		8	۱ w	VATE	I R COI	50 80 NTENT %	ADDITIONAL LAB. TESTING	THERMIST	
0 -		Ground Surface (GW) GRAVEL, some cobble, trace silt, trace sand; brown; wet).00			2	20												Bentonite	×
2							7	70												Bentonite/Slough	
4 4	Irack Mounted Sonic Urill Sonic (Casing:5 in. Casing;	(SW) SAND, medium, trace silt; brown; wet		1.27	СС		5	50	 1 BH20-04A&B 	E										Bentonite	
5		(GW) GRAVEL, trace silt, trace sand; brown; wet (SM) SILTY SAND; reddish brown; moist		1.88 5.49			5	50													
6		(GW) GRAVEL and SAND, medium gravel, medium sand		5.10	CC		7	70	2 BH20-04C	E	Ð									Filter Sand	
		(ML) CLAYEY SILT, presence of organics; dark grey;		7.32	СС	-			3 BH20-04D	E	8									Slough	
8		End of Monitoring Well.																			
10												SO	DIL CL	ASSI	FICA		SYST	EM: GAC	s		
DEP 1 : 1		SCALE				Ç		G	OLD	Ε	R						.OGG	ED: KB/EI	२		

SHEET 1 OF 1 DATUM: Ground Surface

PROJECT No.: 19131856
CLIENT: Yukon Government, Comm

RECORD OF MONITORING WELL: MW20-03

unity Services PROJECT: 4GCS LOCATION: Dawson, YK

DRILLING DATE: April, 27, 2020 DRILLING CONTRACTOR: Metro Drilling SHEET 1 OF 1

DATUM: Ground Surface

	Π	g	SOIL PROFILE		GEC	TEC	ня	AMP	LES	СН	EMISTRY SAMF	PLES	PI					DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m					ION	T		PIEZOMETE			
DEPTH SCALE METRES	G RIG	AFT H		0T											pm 2 4 6			⊕ 8		20 40 60				S/0.3	sm V	ADDITIONAL LAB. TESTING	STANDPIPE OR		
PTH S METR	DRILLING RIG	2 D U D N	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	CORE No.	ORE	MBER	SCN	ANALYSED	PI	PID		Ĩ.	-		WAT	ER	CON	NTEN		6	DITIC	THERMISTO INSTALLATIO		
DEI	Ы	SRILL			DEPTH (m)	Ñ	۴	BLOV	SO	CORE RECOVERY %	Ñ		ANA	pp			~		W	′p ⊢ 10	-0	<u>w</u>	0	-1 V	vi 🗄	LAE			
			Ground Surface	0,											2	4	6	8			20	3		40	╈				
0			(OH) CLAY, presence of black organics; grey; frozen		0.00																								8
-		┢	(SM) SILTY SAND, gravels; rusty	<u>íí</u>	0.30																								
-			brown; frozen																										8
_										100																			8
- 1	≣	ng;)																											8-
-	onic D	. Casi	(SP) SAND, medium, gravel; brown;		1.22																						Bentonite/Sand Slurry		Š.
-	Track Mounted Sonic Drill	ng:5 ir	loose, moist	00	1.52	1	СС				1	BH20-10A		Ð													Siurry		8
_	< Mour	(Casi	(GP) GRAVEL, silt, sand; green; - Green Schist Chlorite	°C	1.02																								
- 2	Tracl	Sonic (Casing:5 in. Casing;)		00																									8-
		"		0						25																			8
E				000	1					25																			8
-				00																									Ž
- 3				h ~																							Slough		NO.
3	H																											K.) K	/ 1 -
_			(SM) SILTY SAND, gravel; greyish black; moist		3.20																								
-														œ															
-			(GW) GRAVEL, silt, sand, wet	•	3.66	2	CC			80	2	BH20-10B																	
- 4																											Filter Sand		
_		┢	(BEDROCK) Green Schist, dry, soft		4.27																						Slotted Screen		
E																													
_																													
- 5																													<u> </u> _
E																												· · · ·	•
-										100																	011	· · · ·	
-				$\langle \rangle \rangle$																							Slough		•
- 6						3	СС				_	BH20-10C		₿														· · · ·	
		╞			6.10	3	UU				3	ВП20-10С					\vdash								+				<u> </u>
-			End of Monitoring Well.																										
-																													
_																													
- 7																													-
-																													
-																													
-																													
8																													-
-																													
-																													
-																													
- 9																													_
-																													
				1																									
F																													
÷				1																									
- 10				1																									_
	1			1	I					I	I	1	I	1	S	OIL	CLA	SSIF	ICA		1 51	YST	EM:	GA	CS		<u>I</u>		
DE	EPTH	H S(CALE							C	G	OLD	Ε	R	1								ED:						
1	: 50						<	V													(CHE	CK	ED:	EA				

APPENDIX B

Photographic Log

Photo 1: Drilling and installation of MW20-02, 25 April 2020

Photo 2: Location of BH20-03, 25 April 2020

Photo 3: Bedrock located in MW20-03, green schist, 27 April 2020

Photo 4: Completed MW20-03, 27 April 2020

Photo 5: Completed MW20-02, 26 April 2020

APPENDIX C

Groundwater Development and Sampling Sheets

$\hat{\boldsymbol{\omega}}$	
Groundwater Development, Purging and Sampling S	heet Purge/Sample
GOLDER	
WELL ID: MW20-02 PROJECT NO.:	19131856
	KB
WEATHER: Clear -++++++++++++++++++++++++++++++++++++	26 Apr 2020
	1:00
Depth to Bottom of Well Below Top of Casing (A): 7625 (meters) Easting: 576919	Northing: <u>7103563</u>
Depth to Water Below Top of Casing (B): 4,187 (meters) Well headspace:	ppm
	ushmount 🔬 Stickup monument
Stick-up : 5 G G 4 (meters) Well locked: 🔊 Ye	es 🗆 No
FIELD EQUIPMENT Field Meters Calibrated:	
Pump: by none by Waterra Dubmersible Deristaltic	Bladder
Bailer: Main Bailer: Teflon	D PVC
Filter: 😼 none 🗆 In-line 🗆 Vacuum	Syringe
Equipment left in well: D none Bailer Baile	Datalogger
	$6(*C): 6.9 \times 6 = 41.4$ litres
Purge Volumes Purge start time: 9:1 Casing In. Diam. ½" 1" 1½ 2" 4" 6" •double for Purge end time: 10	
/ol (L/m of casing)* (C) 0.1 0.5 0.8 1.1 2.0 8.1 18.2 filter pack. Pump inlet depth:	m bTOC
VOL Water Level TEMP pH SP.COND. REDOX DIS. TIME REMOVED (m bTOC) (°C) (UNITS) (uS/cm) (mV) (mg/L) c	
Stabilisation Criteria (ASTM D4448-01) +/- 0.2 +/-0.1 +/- 3% +/- 10 +/- 10	% Colour, turbidity, odour etc should be stable
1:41 6 4.187 0.6 7.88 502.1 146.2 4.0	4 Turbid, Brawn, acodor, mush
4:45 12 - 0.6 7.52 502.6 125.5 3.9	
9:47 18 4.187 0.6 7.31 499.0 108.9 4.44	
$9:49 \ 24 \ - \ 0.6 \ 7.27 \ 502.1 \ 102.3 \ 4.11$	
1:51 30 4.19 0.6 7.23 501.4 95.4 3.9	O " "
1:53 36 - 0.6 7.22 499.5 91.3 4.20	7 u 11
7:55 42 4.19 0.6 7.20 502.2 87.5 3.9	B et u
1:57 48 - 0.6 7.20 498.6 85.0 4.0	3
1.59 54 4.19 0.6 7.18 503.2 80.9 3.7	2 11 1
10.01 60 - 0.6 7.17 502.6 79.9 3.66	u lt
0:03 66 4.19 0.6 7.18 499.3 77.3 3.9	
10:05 72 - 0.6 7.19 500.4 74.6 4.01	
	Yes (describe):
urbidity: NTU or relative scale (circle as appropriate): Clear 1 2 3 4 5 6	8 9 10 Very Silty
QA/QC Sample/s :	
NOTES (consumables, well condition, pictures, etc)	to alma
0:18 78 - 0.6 7.21 502.1 61.3 4.02	Turbid Brown/no odor
0:20 84 - 0.6 7.22 502.5 60.2 3.93	
12 90 4.19 016 7.19 503 8 58.9 3.63	
0:24 96 - 0.5 7.19 502.2 58.7 3.71	
$\frac{0.24 \ 96 \ -}{0.5 \ 7.19 \ 502.2 \ 58.7 \ 3.71}$ $\frac{0.24 \ 96 \ -}{0.5 \ 7.19 \ 502.2 \ 58.7 \ 3.71}$ $0.279 \ 127$	Bottle count:

	11	1	12 20/10	1279	126D
0	H	4	1279/10	1211	11200

GOLDE	R	5	Groundwa	ter Develop	ment, Purgi	ng and Sam	pling Sheet		X Development □ Purge/Sample
	WELL ID:	MW2	0-03			PROJECT N	10.: 19	13185	6
\bigcirc	SITE:		1059		FIEL	D PERSONN	el: Ki	3/ER	
	WEATHER	Clear	,			DA1	re: 27	April	
	PERATURE:	1						36	
	/ater Below To umn:	Below Top of C op of Casing (B) : <u>3</u>	.012. (n 2.0743 (n	neters) Well neters) Corr	ing: <u>577</u> headspace: pletion: locked:	ISC Flushmo Yes	ppm punt 送、	7103413 Stickup monument No
	ers Calibrated	:							
Pu	imp:	🛛 none	🙀 Wate	erra 🗆	Submersible	🗆 Pe	ristaltic	🗆 Bladd	er
Ва	iler:	🛓 none	/	🗆 Sta	inless Steel	🗆 Te	flon	□ PV	C C
	lter:	□ none		🗆 In-li			cuum		ringe
	t left in well:			🗆 🗆 Bai			bing		talogger
	VELOPMENT	/ PURGING		~			ne ((A – B(* C) : e: <u> </u>	2.486	= 33 litres
Purge Vol Casing In.		1/2" 1"	11/4 11/2	2" 4" 6"	7		e: <u>(1, 2)</u> e:		
	casing)* (C)	0.1 0.5		2.0 8.1 18.2		Pump inlet dep			тос
TIME	VOL REMOVED ation Criteria (ASTM	Water Level (m bTOC)	TEMP (⁰C) +/- 0.2	pH (UNITS) +/-0.1	SP.COND. (uS/cm) +/- 3%	REDOX (mV) +/- 10	DIS.0 ₂ (mg/L) or % +/- 10%	content, etc.)	ur, odour, sheen, brittle film, silt ity, odour etc should be stable
19129	S		8.3	8.18	458.8	146.8	4.43	Turbid,	· · · · · · · · · · · · · · · · · · ·
19:30			7.9	7.88	and the second	128.0	5.91	N DIG	brown noshere
19:32		3,03	7.7	7.77	431,1 450 Z		5.98	18	<i>e</i> ;
19:33	20		6.6	7.76	440.9	86.9	5.82	sł.	44
19:34	25	-	6.7	7.81	443.6	82.7	6.40	ι(4
		302	6.1	7.83	441.8	75,5	6.37	6	۰(
19:32	30 35) 0 2		7.82	451.0	68.7	7.01	<u>t</u> k	ţ,
			6.2			the second se		81	
19:38	40		5.7	1	442.3		7.03		
19:39	45		5.8	1.82	445,4	64.9	7.11	1.1.	
						-			
									3
SAMPLING	G Water Od	our: 🖌 No	🗆 Yes (de	escribe):		Sheen	No 🗆 Y	es (describe):	
Turbidity:	NT	U or relative sc	ale (circle as a	ppropriate):	Clear 1	2 3 4	5 6 7 8	9 10	Very Silty
QA/QC Sa	mple/s: 🗆			Type and ID :		~			
NOTES (co	onsumables.	well condition	, pictures, etc	;)					
· · · · · ·	oto#1	-	,,,	·					
TI		207							
0									
							6		
SCN:	- @								Bottle count:

Reviewed by:

Development Durge/Sample

S			Groundwat	ter Developr	nent, Purgii	ng and Sam	pling Sheet			urge/Sample
GOLDE		MWZ	0-07		-	PROJECT N	0.: [19]	31856		
\bigcirc		LOT			FIEL	D PERSONN	the second se	SMM		
	WEATHER:	Sunn	Ч			DAT	re: 128	May	20	
	ERATURE:)			TIN	1E: 819	5		
Depth to Bo	ottom of Well	Below Top of C				ing: 576°		Northing: 1	103562	e ii
		op of Casing (B				headspace:	1.5	ppm		
Water Colu	mn:		_			pletion:	r Flushmo		Stickup monume	ent
Stick-up :			C	0.62 (m	eters) Well	locked:	75 Yes		10	
FIELD EQU	JIPMEN I									
	mp:	□ none		erra 🗆	Submersible	bø Pe	ristaltic	Bladde		
	ler:	M none			nless Steel		flon			
	ter:	□ none		😰 In-lii			cuum		inge	
	left in well:	□ none		🗆 Bail	er	y₂ Tu	bing	D Dat	alogger	
WELL DEV	ELOPMENT	/ PURGING				One well volum	ne ((A - B(* C)	9 x3=	27- litr	es
Purge Volu			F				e: 9:02			4
Casing In. [1/2" 1" 0.1 0.5		2" 4" 6" 2.0 8.1 18.2	- double loi	Purge end time Pump inlet dep		m b1	00	
	casing)* (C) VOL	Water Level	TEMP	pH	filter pack SP.COND.	REDOX	DIS.02		r, odour, sheen, brit	tte film, silt
TIME	REMOVED tion Criteria (ASTN	(m bTOC)	(°C) +/- 0.2 ∨	(UNITS) +/-0.1	(uS/cm) +/- 3%	(mV) +/- 10 🗸	(mg/L) or % +/- 10%	content, etc.)	y, odour etc should be	stable
9107		3.292	(,8	7,22	700.0	138.7	0.50		Grey Sh	
9:12	4	2.010		7,23			0.39	"	Lacyish	- or aur
		2 2 0 4	1.22		698.0	1130		u	4	
9:17	6	3.288	1.6	7.23	694.6	102,8	0.34	41	L f	
9:22	8	3.288	1.6	7.22	695.4	98.5	0.33	ц	4	
9:26	10	3,288	1.7	7.21	690.8	94.2	0.32			
					-					
			(CI	1 12	1	_		Sente Sur		
			OT	ab1112	L'A					
	6		C .	in the solution						
									_	
SAMPLING	Water Od	our: ya No	🗆 Yes (de	scribe):		Sheen p	kn ₀ No ⊡ Y	es (describe):		
Turbidity: _	NT	U or relative sca	ale (circle as ap	opropriate):	Clear 1	2 3 4	5 6 7 8	9 10	Very Silty	
QA/QC Sar	nple/s: □	Yes 🗆 N	0 QA/QC	Type and ID :	10171	- 02	duplic	ate.		
NOTES (co	onsumables.	well condition	, pictures. etc)						
	hoto #	1801								
p p	NOTO T	1801								
0										
				10-11-						
								-		
SCN: 1017	1-01 @	9:30						E	Bottle count:	<u>r</u>

Groundwater Development, Purging and Sampling Sheet

DevelopmentPurge/Sample

GOLDE		MWZ	0-03			PROJECT N	10.: 19	131856
\cap		Lot			EIEI	D PERSONN	V D	MM
							100	the second se
TEM	WEATHER: PERATURE:	10	v 1501	nvy		DA1 TIN	1Ε: <u>Γ & C</u> /Ε: Ο ι:	
			Caping (A):	(70 /	neters) East	ing: 577		Northing: 7103407
		Below Top of (op of Casing (E				headspace:	00	ppm
Water Coli					·	pletion:	- Flushm	
Stick-up :					neters) Well	locked:	Yes	□ No
FIELD EQ	UIPMENT							
Field Mete	ers Calibrated	l:						
	ump:	none none	HQ Wat		Submersible	A	ristaltic	Bladder
		🙇 none			inless Steel		flon	
	ilter:			s In-I □ Bai			cuum bing	Syringe Datalogger
	It left in well: VELOPMENT					1111	ne ((A – B(* C)	
Purge Vol						Purge start tim		$\frac{34}{82}$ (0) litres
Casing In.		1/2" 1"		2 4 6"	*double for	Purge end time	e:	
Vol (L/m o	f casing)* (C)			2.0 8.1 18.2		Pump inlet der		m bTOC
TIME	VOL REMOVED	Water Level (m bTOC)	TEMP (ºC)	pH (UNITS)	SP.COND. (uS/cm)	REDOX (mV)	DIS.02 (mg/L) or %	REMARKS (colour, odour, sheen, brittle film, silt content, etc.)
	ation Criteria (ASTN	1	+/- 0.2	+/-0.1	+/- 3%	+/- 10	+/- 10%	Colour, turbidity, odour etc should be stable
10:04		2.44	1.7	7.22	455.5	89.9	12.35	clear, no sclaur
10:07	2.	2.44	1.7	7.64	\$454.3	92.0	11.68	
10:10	3	2.44	1.8	7.63	453.9	93.0	(129	и
10.12	4	2.44	1.8	7.67	454.6	90.8	11.18	
10:15	5	2.44	1.8	7.69	454.1	90.1	10.95	<u>ч</u>
			CL	bilizee				
			(374	DITIZOE				
5								
			-					
							1	
SAMPLIN	G Water Od	our: 🗆 No	🗆 Yes (d	escribe):		Sheen a	NO DY	′es (describe):
Turbidity:	NT	U or relative so	ale (circle as a		Clear 1	2 3	8	3 9 10 Very Silty
QA/QC Sa	ample/s : 👳	Yes 🗆 N		C Type and ID :	10172	02	Fie	ld Blank
NOTES (c	onsumables,	well conditio	n, pictures, et	c)				
phra	0 # 18	02	4000					
\bigcirc								
~								
SCN: 1013	12-01@	10:15						Bottle count:
T.C.								Devisioned by:
LR	= (0) 7	9-09						Reviewed by:

APPENDIX D

Laboratory Certificate of Analysis and Chain of Custody Forms

CERTIFICATE OF ANALYSIS : WR2000176 Page : 1 of 8 :1 Laboratory Golder Associates Ltd. : Whitehorse - Environmental : Karlee Bendera Account Manager : Amber Springer Address : # 203, 170 Titanium Way : #12 151 Industrial Road Whitehorse YT Canada Y1A 0G1 Whitehorse YT Canada Y1A 2V3 · 867 633 6076 Telephone : +1 867 668 6689 Date Samples Received : 19131856/3000 : 30-Apr-2020 13:00 : -----Date Analysis Commenced : 05-May-2020 : 17-662268 Issue Date : 25-May-2020 11:32 : KB/ER · ____ : Payment Terms for Finance

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 9

: 6

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Work Order

Amendment

Client

Contact

Address

Telephone

C-O-C number

Quote number

No. of samples received No. of samples analysed

Project

Sampler

PO

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Evan Ben-Oliel	Metal Analyst	Metals, Burnaby, British Columbia
Lisa Watt	Lab Supervisor - Environmental	Metals, Edmonton, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Workorder Comments

Hexavalent Chromium data is included for WR2000176 - 1 & 9.

Sub-Matrix: Soil			Cl	ient sample ID	BH20-03A	BH20-04A	BH20-04B	BH20-04C	BH20-10B
(Matrix: Soil/Solid)					SOIL	SOIL	SOIL	SOIL	SOIL
			Client sampli	ng date / time	25-Apr-2020 09:50	25-Apr-2020 13:20	25-Apr-2020 13:20	25-Apr-2020 14:00	27-Apr-2020 17:50
Analyte	CAS Number	Method	LOR	Unit	WR2000176-001	WR2000176-003	WR2000176-004	WR2000176-005	WR2000176-008
					Result	Result	Result	Result	Result
Physical Tests									
moisture			0.25	%	14.3			10.1	10.0
pH (1:2 soil:water)		E108	0.10	pH units	8.07	8.12	8.21	8.11	8.78
Metals									
aluminum	7429-90-5		50	mg/kg	26300	14200	15300	10100	31200
antimony	7440-36-0		0.10	mg/kg	11.7	0.90	1.03	0.75	0.59
arsenic	7440-38-2		0.10	mg/kg	4.18	10.5	11.8	9.36	3.52
barium	7440-39-3		0.50	mg/kg	98.2	227	150	192	140
beryllium	7440-41-7	E440	0.10	mg/kg	0.17	0.21	0.24	0.33	0.12
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
cadmium	7440-43-9	E440	0.020	mg/kg	0.129	0.228	0.227	0.246	0.188
calcium	7440-70-2	E440	50	mg/kg	4020	2600	3370	2810	3370
chromium	7440-47-3	E440	0.50	mg/kg	242	41.1	41.5	35.0	125
cobalt	7440-48-4	E440	0.10	mg/kg	163	12.3	19.2	8.90	22.4
copper	7440-50-8	E440	0.50	mg/kg	49.0	46.0	46.2	34.4	122
iron	7439-89-6	E440	50	mg/kg	36300	25300	26600	19800	32900
lead	7439-92-1	E440	0.50	mg/kg	492	4.57	6.87	4.91	1.93
lithium	7439-93-2	E440	2.0	mg/kg	25.7	14.0	16.1	13.0	21.6
magnesium	7439-95-4	E440	20	mg/kg	26800	12000	12200	7230	35600
manganese	7439-96-5	E440	1.0	mg/kg	600	503	512	348	1090
mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
molybdenum	7439-98-7		0.10	mg/kg	3.58	2.27	2.26	2.50	0.89
nickel	7440-02-0	E440	0.50	mg/kg	77.2	27.4	26.9	25.5	62.0
phosphorus	7723-14-0		50	mg/kg	281	562	770	666	192
potassium	7440-09-7	E440	100	mg/kg	160	420	460	530	120
selenium	7782-49-2		0.20	mg/kg	<0.20	0.41	0.39	0.41	<0.20
silver	7440-22-4		0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
sodium	7440-23-5		50	mg/kg	117	86	120	109	52
strontium	7440-24-6		0.50	mg/kg	16.4	21.4	25.0	23.4	11.5
sulfur	7704-34-9		1000	mg/kg	<1000	<1000	<1000	<1000	<1000
I		1		3					1

Sub-Matrix: Soil			C	lient sample ID	BH20-03A	BH20-04A	BH20-04B	BH20-04C	BH20-10B
(Matrix: Soil/Solid)					SOIL	SOIL	SOIL	SOIL	SOIL
			Client sampl	ing date / time	25-Apr-2020 09:50	25-Apr-2020 13:20	25-Apr-2020 13:20	25-Apr-2020 14:00	27-Apr-2020 17:50
Analyte	CAS Number	Method	LOR	Unit	WR2000176-001	WR2000176-003	WR2000176-004	WR2000176-005	WR2000176-008
					Result	Result	Result	Result	Result
Metals									
thallium	7440-28-0	E440	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	1220	342	364	248	513
tungsten	7440-33-7	E440	0.50	mg/kg	107	4.18	6.95	4.52	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.364	0.606	0.650	0.602	0.076
vanadium	7440-62-2	E440	0.20	mg/kg	95.7	52.0	54.4	39.2	104
zinc	7440-66-6	E440	2.0	mg/kg	71.8	72.1	70.5	60.0	42.4
zirconium	7440-67-7	E440	1.0	mg/kg	1.3	1.9	2.0	2.0	<1.0
Speciated Metals									
chromium, hexavalent [Cr VI]	18540-29-9	E532	0.10	mg/kg	<0.10				
chromium, trivalent [Cr III]	16065-83-1	EC535C	0.030	mg/kg	242				
Volatile Organic Compounds									
benzene	71-43-2	E611A	0.0050	mg/kg	<0.0050			<0.0050	<0.0050
ethylbenzene	100-41-4	E611A	0.015	mg/kg	<0.015			<0.015	<0.015
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.200	mg/kg	<0.200			<0.200	<0.200
styrene	100-42-5	E611A	0.050	mg/kg	<0.050			<0.050	<0.050
toluene	108-88-3	E611A	0.050	mg/kg	<0.050			<0.050	<0.050
xylene, m+p-	179601-23-1	E611A	0.050	mg/kg	<0.050			<0.050	<0.050
xylene, o-	95-47-6	E611A	0.050	mg/kg	<0.050			<0.050	<0.050
xylenes, total	1330-20-7	E611A	0.075	mg/kg	<0.075			<0.075	<0.075
BTEX, total		E611A	0.10	mg/kg	<0.10			<0.10	<0.10
BTEX+Styrene, total	N/A	E611A	0.15	mg/kg	<0.15			<0.15	<0.15
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	0.050	%	81.4			94.4	95.6
difluorobenzene, 1,4-	540-36-3		0.050	%	88.4			105	103
Hydrocarbons									
EPH (C10-C19)		E601A	200	mg/kg	<200			<200	<200
ЕРН (С19-С32)		E601A	200	mg/kg	<200			<200	<200
VHs (C6-C10)		E581.VH+F1	10	mg/kg	<10			<10	<10
HEPHs		EC600A	200	mg/kg	<200			<200	<200
LEPHs		EC600A	200	mg/kg	<200			<200	<200

Sub-Matrix: Soil			Cl	ient sample ID	BH20-03A	BH20-04A	BH20-04B	BH20-04C	BH20-10B
(Matrix: Soil/Solid)					SOIL	SOIL	SOIL	SOIL	SOIL
			Client sampli	ng date / time	25-Apr-2020 09:50	25-Apr-2020 13:20	25-Apr-2020 13:20	25-Apr-2020 14:00	27-Apr-2020 17:50
Analyte	CAS Number	Method	LOR	Unit	WR2000176-001	WR2000176-003	WR2000176-004	WR2000176-005	WR2000176-008
					Result	Result	Result	Result	Result
Hydrocarbons									
VPHs		EC580A	10	mg/kg	<10			<10	<10
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (EPH surr)	392-83-6		5.0	%	80.7			82.0	83.1
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	78.4			110	120
Polycyclic Aromatic Hydrocarbons									
acenaphthene		E641A-L	0.0050	mg/kg	<0.0050			<0.0050	<0.0050
acenaphthylene		E641A-L	0.0050	mg/kg	<0.0050			<0.0050	<0.0050
acridine		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
anthracene		E641A-L	0.0040	mg/kg	<0.0040			<0.0040	<0.0040
benz(a)anthracene		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
benzo(a)pyrene	50-32-8	E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
benzo(b+j)fluoranthene		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
benzo(b+j+k)fluoranthene		E641A-L	0.015	mg/kg	<0.015			<0.015	<0.015
benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
benzo(k)fluoranthene	207-08-9	E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
chrysene	218-01-9	E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	mg/kg	<0.0050			<0.0050	<0.0050
fluoranthene	206-44-0	E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
fluorene		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
methylnaphthalene, 1-		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
methylnaphthalene, 2-		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
naphthalene		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
phenanthrene		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
pyrene		E641A-L	0.010	mg/kg	<0.010			<0.010	<0.010
quinoline	6027-02-7		0.010	mg/kg	<0.010			<0.010	<0.010
B(a)P total potency equivalents [B(a)P TPE]		E641A-L	0.020	mg/kg	<0.010			<0.010	<0.010
IACR (CCME)		E641A-L	0.15	mg/kg	<0.11			<0.11	<0.11
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A-L	0.010	%	88.1			77.5	87.3
chrysene-d12	1719-03-5		0.010	%	91.6			85.2	89.9

Sub-Matrix: Soil			Cl	lient sample ID	BH20-03A	BH20-04A	BH20-04B	BH20-04C	BH20-10B
(Matrix: Soil/Solid)					SOIL	SOIL	SOIL	SOIL	SOIL
			Client sampli	ing date / time	25-Apr-2020 09:50	25-Apr-2020 13:20	25-Apr-2020 13:20	25-Apr-2020 14:00	27-Apr-2020 17:50
Analyte	CAS Number	Method	LOR	Unit	WR2000176-001	WR2000176-003	WR2000176-004	WR2000176-005	WR2000176-008
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons Surrogates									
naphthalene-d8	1146-65-2	E641A-L	0.010	%	94.2			90.8	94.3
phenanthrene-d10	1517-22-2	E641A-L	0.010	%	93.4			88.4	94.2

Please refer to the General Comments section for an explanation of any qualifiers detected.

Sub-Matrix: Soil			С	lient sample ID	BH20-10C			
(Matrix: Soil/Solid)					SOIL			
			Client sampl	ing date / time	27-Apr-2020 18:10			
Analyte	CAS Number	Method	LOR	Unit	WR2000176-009			
					Result			
Physical Tests							· · · ·	
moisture		E144	0.25	%	13.4			
pH (1:2 soil:water)		E108	0.10	pH units	9.02			
Metals								
aluminum	7429-90-5	E440	50	mg/kg	42800			
antimony	7440-36-0		0.10	mg/kg	<0.10			
arsenic	7440-38-2		0.10	mg/kg	0.81			
barium	7440-39-3		0.50	mg/kg	33.7			
beryllium	7440-41-7	E440	0.10	mg/kg	<0.10			
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20			
boron	7440-42-8	E440	5.0	mg/kg	<5.0			
cadmium	7440-43-9	E440	0.020	mg/kg	<0.020			
calcium	7440-70-2	E440	50	mg/kg	2030			
chromium	7440-47-3	E440	0.50	mg/kg	459			
cobalt	7440-48-4	E440	0.10	mg/kg	30.2			
copper	7440-50-8	E440	0.50	mg/kg	15.8			
iron	7439-89-6	E440	50	mg/kg	41100			
lead	7439-92-1	E440	0.50	mg/kg	0.52			
lithium	7439-93-2	E440	2.0	mg/kg	28.2			
magnesium	7439-95-4	E440	20	mg/kg	59300			
manganese	7439-96-5	E440	1.0	mg/kg	688			
mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500			
molybdenum	7439-98-7	E440	0.10	mg/kg	0.10			
nickel	7440-02-0	E440	0.50	mg/kg	112			
phosphorus	7723-14-0	E440	50	mg/kg	114			
potassium	7440-09-7	E440	100	mg/kg	180			
selenium	7782-49-2		0.20	mg/kg	<0.20			
silver	7440-22-4	E440	0.10	mg/kg	<0.10			
sodium	7440-23-5		50	mg/kg	<50			
strontium	7440-24-6	E440	0.50	mg/kg	2.00			
sulfur	7704-34-9		1000	mg/kg	<1000			
thallium	7440-28-0	E440	0.050	mg/kg	<0.050			
1		1	1	1 1 1		I I	I	I I

Sub-Matrix: Soil			Cl	ient sample ID	BH20-10C	 	
(Matrix: Soil/Solid)					SOIL		
		Client sampling date / time			27-Apr-2020 18:10	 	
Analyte	CAS Number	Method	LOR	Unit	WR2000176-009	 	
					Result	 	
Metals							
tin	7440-31-5 ^I	E440	2.0	mg/kg	<2.0	 	
titanium	7440-32-6 H	E440	1.0	mg/kg	892	 	
tungsten	7440-33-7 I	E440	0.50	mg/kg	<0.50	 	
uranium	7440-61-1 I	E440	0.050	mg/kg	<0.050	 	
vanadium	7440-62-2 I	E440	0.20	mg/kg	116	 	
zinc	7440-66-6 I	E440	2.0	mg/kg	33.2	 	
zirconium	7440-67-7 I	E440	1.0	mg/kg	<1.0	 	
Speciated Metals							
chromium, hexavalent [Cr VI]	18540-29-9 I	E532	0.10	mg/kg	<0.10	 	
chromium, trivalent [Cr III]	16065-83-1 I	EC535C	0.030	mg/kg	459	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

	Whitehorse									
Chain of Cus Re	Work Order Reference	76			bel here	7	17-662	268		
ALS Environmental Canada To				se only)			age of			
Report To Contact and company name below will appear on the final report				Se	lect Service Level Belo	w - Contact your AM	to confirm all E&P TA	Ts (surcharge:	s may apply)	
Company: Golder Associates Ltd	Tsi ∎∭bt≥butietosi	li li	ļ		11-11-1		pm - business days - no su			
Contact: Karlee Bendera	- (```` ```````````````````````````````	111			y [P4-20%]		s day [E-100%]			
Phone: 8107-234 (04122	Telephone : +1 867 668 6689			FQ	y [P3-25%]	8	, Weekend or Statut	oo, boliday II	E3 300%	<u> </u>
Company address below will appear on the final report				<u> </u>	y [P2-50%]		ry opening fees may		-2-200%	
Street: 13-151 Industrial Rd	Email 1 or Fax Kbender	-06000	Ida m		and Time Required for all L	E&P TATs:	dd-m	nm-yy bhimm	. <u></u>	
City/Province: Whise, YT	Email 2 2 0 0 00	1dec 20	$\frac{1}{2}$		an not be performed accordin					
Postal Code: UIA 2V2	Email 3 a Dre entr	01 Q G	Aldren				s Request	<u> </u>		
Invoice To Same as Report To YES NO				<u> </u>	Indicate Filtered (F)		and Preserved (F/P) below	<u> </u>	<u> </u>	
Copy of Invoice with Report YOYES NO								<u> </u>	Provide further details	
A THE ACCOUNT OF ALL					┼─╍┼─╴┼──┼─				- I j	
	Email 1 or Fax Kbender	2000							1 E	
Contact: Karlec Bendera. Project Information	Email 2 Q DAN (MAND	rado							ie l	
ALS Account # / Quote #:	AFE/Cost Center.	PO#	j,						ļ	
	Maior/Minor Code:				×					
Job #: 19131856/3000 PO/AFE:		Routing Code:				nmental Divi	sion		(please	Ě.
	Requisitioner:				Whiteh					I A
LSD:	Location:	1	1 -			Order Referen			HOLD	N
ALS Lab Work Order # (lab use only):*	ALS Contact:	Sampler: K	BIER		. vv	R2000 ⁻			ES ON	NUMBER OF CONTAINERS
ALS Sample # Sample Identification and/or Coordinates	Date	Time	Sample Type		.' ■ ₩	<u>뒷난? 52 주 당신</u> ~			SAMPLES Sample is	- IS
(Itab use only) (This description will appear on the report)	(dd-mmŵ-yy)	(hh:mm)			<u> </u>				SAM Sam	Z
BH20-03 A	25-Apr-20		<u>Sál</u>							
BH20-03B	25-Apr-20					0,57,112,1615			\mathbf{X}	
BH20-04A	25-Apr-20				<u>⊤</u> . ∎∥				TV I	
BH20-04B	25-Apr-20				Telephone	: +1 867 668 6689				
	24 1	1-1 <u>2</u>	<u>├ </u>		F (+	
DT120-04C	25-Apr-20	1 2 2 2 -	<u> </u>					-+	<u> </u> ≿ -	
BH20-04D	25-Apr-20	14:20								
BH20-10A	27-Apr-20	17:00								
BH20-10B	27-A0-20	17:50							$ \chi $	
BH20-10C	27-Apr-20	18:10	Cor Cor						TV -	
									++	1-1
19885 m									+-+-	+
			<u> </u>		┟──┼──┼──					
		L								
Drinking Water (DW) Samples ¹ (client use) Special Instructions	/ Specify Criteria to add on report by clicl (electronic COC only)	king on the drop-do	own list below	864 			RECEIVED (lab us			
Are samples taken from a Regulated DW System?				Frozen		SIF Observation	in the second	No		
TYES NO				Cooling Init	All there is the second		ici res 📋			
Are samples for human consumption/ use?				100.251				OLER TEMPERA	S Justice Street	
YES NO			•	a	121-7	* * * ***	IN C M	ANO		
() SHIPMENT RELEASE (client use)	INITIAL SHIPMEN	T RECEPTION UP	huse artic		<u>7</u>			<u>NVY C</u>	キエ	2
Released by I Date Time:	Received by:	Date: 100 (la		Time:	Received by:	Date	TRECEPTION (lab	use only)	- 1	an. Antangi Antangi
Kt 30 Apr 20 130	Lip .	ANT 301	bord 🐤	1:00	🖌 🕺 🕵	-SICA	Mae	the mon	121	ンノ素
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		TE LABORATORY	COPY YELLOV	V - CLIENT C	OPY			,,	JUC	LY 2017 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the faser acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

÷

CERTIFICATE OF ANALYSIS

Work Order	: WR2000250	Page	: 1 of 7
Client	: Golder Associates Ltd.	Laboratory	: Whitehorse - Environmental
Contact	: Karlee Bendera	Account Manager	: Amber Springer
Address	: # 203, 170 Titanium Way Whitehorse YT Canada Y1A 0G1	Address	: #12 151 Industrial Road Whitehorse YT Canada Y1A 2V3
Telephone	: 867 633 6076	Telephone	: +1 867 668 6689
Project	: 19131856/6000/6003	Date Samples Received	: 29-May-2020 10:25
PO	:	Date Analysis Commenced	: 03-Jun-2020
C-O-C number	: 10171	Issue Date	: 08-Jun-2020 14:59
Sampler	:		
Site	:		
Quote number	: Payment Terms for Finance		
No. of samples received	: 2		
No. of samples analysed	: 2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Aaron Yu	Laboratory Analyst	Metals, Burnaby, British Columbia
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Clarie Tejano		Metals, Burnaby, British Columbia
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Sub-Matrix: Groundwater			Cli	ent sample ID	10171-01	10171-02	 	
(Matrix: Water)								
	Client sampling date / time					28-May-2020 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	WR2000250-001	WR2000250-002	 	
					Result	Result	 	
Physical Tests								
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	321	326	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0019	0.0025	 	
antimony, dissolved	7440-36-0		0.00010	mg/L	0.00014	0.00013	 	
arsenic, dissolved	7440-38-2		0.00010	mg/L	0.00024	0.00024	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0692	0.0704	 	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000335	0.0000324	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	76.1	77.1	 	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00068	0.00067	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00050	0.00052	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.037	0.038	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0032	0.0033	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	31.8	32.5	 	
manganese, dissolved	7439-96-5		0.00010	mg/L	0.229	0.235	 	
mercury, dissolved	7439-97-6		0.0000050	mg/L	<0.000050	<0.000050	 	
molybdenum, dissolved	7439-98-7		0.000050	mg/L	0.00181	0.00178	 	
nickel, dissolved	7440-02-0		0.00050	mg/L	0.00151	0.00156	 	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.09	1.13	 	
rubidium, dissolved	7440-17-7		0.00020	mg/L	0.00068	0.00070	 	
selenium, dissolved	7782-49-2		0.000050	mg/L	0.00112	0.000950	 	
silicon, dissolved	7440-21-3		0.050	mg/L	4.52	4.56	 	
silver, dissolved	7440-22-4		0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5		0.050	mg/L	7.40	7.65	 	
	1110 20-0	I.		J [.] –				

Sub-Matrix: Groundwater			CI	ient sample ID	10171-01	10171-02	 	
(Matrix: Water)								
			Client sampli	ng date / time	28-May-2020 09:30	28-May-2020 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	WR2000250-001	WR2000250-002	 	
					Result	Result	 	
Dissolved Metals								
strontium, dissolved	7440-24-6		0.00020	mg/L	0.380	0.384	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	28.0	27.6	 	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00142	0.00151	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0019	0.0021	 	
zirconium, dissolved	7440-67-7		0.00020	mg/L	<0.00020	<0.00020	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	
Speciated Metals								
chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.00050	mg/L	<0.00050	<0.00050	 	
Volatile Organic Compounds								
benzene	71-43-2	E611C	0.50	µg/L	<0.50	<0.50	 	
bromodichloromethane	75-27-4	E611C	0.50	µg/L	<0.50	<0.50	 	
bromoform	75-25-2	E611C	0.50	µg/L	<0.50	<0.50	 	
carbon tetrachloride	56-23-5	E611C	0.50	µg/L	<0.50	<0.50	 	
chlorobenzene	108-90-7	E611C	0.50	µg/L	<0.50	<0.50	 	
chloroethane	75-00-3	E611C	0.50	µg/L	<0.50	<0.50	 	
chloroform	67-66-3		0.50	μg/L	<0.50	<0.50	 	
chloromethane	74-87-3		0.50	μg/L	<0.50	<0.50	 	
dibromochloromethane			0.50	μg/L	<0.50	<0.50	 	
dichlorobenzene, 1,2-	95-50-1		0.50	μg/L	<0.50	<0.50	 	
dichlorobenzene, 1,3-	541-73-1		0.50	μg/L	<0.50	<0.50	 	
dichlorobenzene, 1,4-	106-46-7		0.50	μg/L	<0.50	<0.50	 	
dichloroethane, 1,1-	75-34-3		0.50	μg/L	<0.50	<0.50	 	
dichloroethane, 1,2-	107-06-2		0.50	μg/L	<0.50	<0.50	 	
1		I	1			1		I

Sub-Matrix: Groundwater			Client sample ID	10171-01	10171-02	 	
(Matrix: Water)							
		Client sa	mpling date / time	28-May-2020 09:30	28-May-2020 09:30	 	
Analyte	CAS Number Method	l LOR	Unit	WR2000250-001	WR2000250-002	 	
				Result	Result	 	
Volatile Organic Compounds							
dichloroethylene, 1,1-	75-35-4 E611C	0.50	µg/L	<0.50	<0.50	 	
dichloroethylene, cis-1,2-	156-59-4 E611C	0.50	µg/L	<0.50	<0.50	 	
dichloroethylene, trans-1,2-	156-60-5 E611C	0.50	µg/L	<0.50	<0.50	 	
dichloromethane	75-09-2 E611C	0.50	µg/L	<0.50	<0.50	 	
dichloropropane, 1,2-	78-87-5 E611C	0.50	μg/L	<0.50	<0.50	 	
dichloropropylene, cis+trans-1,3-	542-75-6 E611C	0.75	μg/L	<0.75	<0.75	 	
dichloropropylene, cis-1,3-	10061-01-5 E611C	0.50	μg/L	<0.50	<0.50	 	
dichloropropylene, trans-1,3-	10061-02-6 E611C	0.50	µg/L	<0.50	<0.50	 	
ethylbenzene	100-41-4 E611C	0.50	µg/L	<0.50	<0.50	 	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611C	0.50	µg/L	<0.50	<0.50	 	
styrene	100-42-5 E611C	0.50	µg/L	<0.50	<0.50	 	
tetrachloroethane, 1,1,1,2-	630-20-6 E611C	0.50	µg/L	<0.50	<0.50	 	
tetrachloroethane, 1,1,2,2-	79-34-5 E611C	0.20	µg/L	<0.20	<0.20	 	
tetrachloroethylene	127-18-4 E611C	0.50	µg/L	<0.50	<0.50	 	
toluene	108-88-3 E611C	0.50	µg/L	<0.50	<0.50	 	
trichloroethane, 1,1,1-	71-55-6 E611C	0.50	µg/L	<0.50	<0.50	 	
trichloroethane, 1,1,2-	79-00-5 E611C	0.50	µg/L	<0.50	<0.50	 	
trichloroethylene	79-01-6 E611C	0.50	µg/L	<0.50	<0.50	 	
trichlorofluoromethane	75-69-4 E611C	0.50	μg/L	<0.50	<0.50	 	
vinyl chloride	75-01-4 E611C	0.40	μg/L	<0.40	<0.40	 	
xylene, m+p-	179601-23-1 E611C	0.50	µg/L	<0.50	<0.50	 	
xylene, o-	95-47-6 E611C	0.50	μg/L	<0.50	<0.50	 	
xylenes, total	1330-20-7 E611C	0.75	μg/L	<0.75	<0.75	 	
Volatile Organic Compounds Surrogates						1	1
bromofluorobenzene, 4-	460-00-4 E611C	0.50	%	92.7	95.3	 	
difluorobenzene, 1,4-	540-36-3 E611C	0.50	%	102	99.9	 	
Hydrocarbons							
ЕРН (С10-С19)	E601A	250	μg/L	<250	<250	 	
EPH (C19-C32)	E601A	250	μg/L	<250	<250	 	
VHw (C6-C10)	E581.V	H+F1 100	μg/L	<100	<100	 	
HEPHw	EC600	A 250	μg/L	<250	<250	 	

Sub-Matrix: Groundwater			Cl	ient sample ID	10171-01	10171-02	 	
(Matrix: Water)								
			Client sampli	ng date / time	28-May-2020 09:30	28-May-2020 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	WR2000250-001	WR2000250-002	 	
					Result	Result	 	
Hydrocarbons								
LEPHw		EC600A	250	µg/L	<250	<250	 	
VPHw		EC580A	100	µg/L	<100	<100	 	
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (EPH surr)	392-83-6		50	%	100	98.2	 	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	91.0	116	 	
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9		0.010	µg/L	<0.010	<0.010	 	
acenaphthylene	208-96-8		0.010	µg/L	<0.010	<0.010	 	
acridine	260-94-6		0.010	µg/L	<0.010	<0.010	 	
anthracene	120-12-7		0.010	µg/L	<0.010	<0.010	 	
benz(a)anthracene	56-55-3		0.010	µg/L	<0.010	<0.010	 	
benzo(a)pyrene	50-32-8	E641A	0.0050	µg/L	<0.0050	<0.0050	 	
benzo(b+j)fluoranthene		E641A	0.010	µg/L	<0.010	<0.010	 	
benzo(b+j+k)fluoranthene		E641A	0.015	µg/L	<0.015	<0.015	 	
benzo(g,h,i)perylene	191-24-2	E641A	0.010	µg/L	<0.010	<0.010	 	
benzo(k)fluoranthene	207-08-9		0.010	µg/L	<0.010	<0.010	 	
chrysene	218-01-9	E641A	0.010	µg/L	<0.010	<0.010	 	
dibenz(a,h)anthracene	53-70-3	E641A	0.0050	µg/L	<0.0050	<0.0050	 	
fluoranthene	206-44-0	E641A	0.010	µg/L	<0.010	<0.010	 	
fluorene	86-73-7	E641A	0.010	µg/L	<0.010	<0.010	 	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.010	µg/L	<0.010	<0.010	 	
methylnaphthalene, 1-	90-12-0	E641A	0.010	µg/L	0.033	0.037	 	
methylnaphthalene, 2-	91-57-6	E641A	0.010	µg/L	0.059	0.063	 	
naphthalene	91-20-3		0.050	µg/L	<0.050	<0.050	 	
phenanthrene	85-01-8		0.020	µg/L	<0.020	<0.020	 	
pyrene	129-00-0		0.010	µg/L	<0.010	<0.010	 	
quinoline	6027-02-7		0.050	µg/L	<0.050	<0.050	 	
Polycyclic Aromatic Hydrocarbons Surrogates								
acridine-d9	34749-75-2	E641A	0.010	%	96.5	103	 	
chrysene-d12	1719-03-5		0.010	%	98.2	100.0	 	
naphthalene-d8	1146-65-2		0.010	%	91.2	95.7	 	
1 -		1	1	I I		I		

Sub-Matrix: Groundwater	ent sample ID	10171-01	10171-02	 			
(Matrix: Water)							
		Client samplir	ng date / time	28-May-2020 09:30	28-May-2020 09:30	 	
Analyte	CAS Number Method	LOR	Unit	WR2000250-001	WR2000250-002	 	
				Result	Result	 	
Polycyclic Aromatic Hydrocarbons Surrogates							
phenanthrene-d10	1517-22-2 E641A	0.010	%	104	110	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

_																				وه ^ر معنون الم الم		
		CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST															No. 10171 page 1 of 1					
Golder Associates					Project Number: 19131856/600/600							Laboratory Name					ALS					
200 – 2920 Virtual Way				Short	Title: 4G	105	Golder Contact:						Address: 12-151 Industrial									
Vancouver, British Columbia, Canada V5M 0C4 Telephone (604) 296-4200 Fax (604) 298-5253				Golde	Golder E-mail Address 1: Golder E-mail Add																	
1	KIEV (IFIC Byoider.com AV) (P										PI	<u>w</u> g	oluer	.com	1						Jesse.	
	Whiteborse					EQuIS Facility Code: 212928698 EQuIS upload: 🗵						Analyses Required										
	Turnaround Time: 24 hr 48 hr Criteria: CSR CCME BC Wate Note: Final Reports to be issued by e-mail				ator Quali	📙 72 hr] Other	,Æ Regular (5 Days)			ş	-	<u>у</u>	2						ê		
						Quote No					Number of Containers	HAY	<u>Vv6(</u>	Dissolved Metals	N HG	RO J				RUSH (Select TAT above)		
,				1						1	f Con		μdν	led h	a si	DWILL				ect TA		
	Sample Control	Sample	Sa. #	Sample Depth	Sample Matrix	Date Sampled	Time Sampled	Sample Type	QAQC Code	Related SCN	ber o	LEPH/HEPH	\mathbf{x}	Nos	Dissolved 3					H (Sele	Remarks	
	Number (SCN)	Location		(m)	(over)	(D / M / Y)	(HH:MM)	(over)	(over)	(over)	Nur	LEP	BTEXI	Ň	N D N	J				RUSI	(over)	
	(0171 - 01	MW20-DJ			WG	28/05/20	9:30		FD	10171-02	7	X	X X	X	x >	<						
	10171 - 02					28/05/10			FDA	10171-01	7		$ \times $	×	<u>'</u> 2 ×	<						
	- 03																					
	- 04													hiteho Work (Order Re	ference	•					
	- 05												1	WF	7200)02	50					
	- 06												<u> </u>		IIZ.KKO						· · · · · · · · · · · · · · · · · · · ·	
-	- 07												-			йн Цар	1 - - - -					
	- 08												ļ									
	- 09 - 10											·	Tele	ephone :	+ 1 867 66	8 6689					J	
	- 10													<u> </u>	<u> </u>							
,	- 12																	+			······································	
	Sampler's Signature:	1		Relinqui	shed by:	Signature		Compar	ו.	Date /			Tim	e		Receive	ed by:	Signatu	ure	Con	npa n y	
Align A				KN	4h		Company, Date 29/05/2 Waybill No.:				Received for Lab by:						·					
Comments: Method of					of Shipme	ent:												Date Time May 29/2000				
Shipped b				by:			Shipment Condition: Seal Intact:				Temp (°C) Cooler opened by:						Date Time					
WHITE: Golder Copy YELLOW: Lab Copy 4,5,5°C I(Pal-												· · · · · · · · · · · · · · · · · · ·										
																	- (<i>f</i>	1	ן בו	0	PalBESED	
																			~	\sim		

golder.com